Finden Sie schnell hartungen für Ihr Unternehmen: 1493 Ergebnisse

HÄRTEN UND VERGÜTEN MIT REESE

HÄRTEN UND VERGÜTEN MIT REESE

Unter geregelter Ofenatmosphäre Max. Nutzmaße Ø 5.000 mm x 5.000 mm Wird ein Stahl aus der Austenitphase (d.h. von Temperaturen über 723 °C) schnell abgekühlt, entsteht ein martensitisches Gefüge, das sich durch hohe Härte auszeichnet. Durch das Anlassen erhält der Stahl eine gewisse Zähigkeit zurück. Beim Vergüten erfolgt das Anlassen bei hohen Temperaturen von bis zu 700 °C, um ein optimales Ergebnis aller mechanischen Kennwerte zu erreichen. Dies ist besonders bei Werkstücken sinnvoll, die dynamisch belastet werden und von denen hohe Zähigkeit gefordert wird.
HÄRTEN UND VERGÜTEN MIT REESE

HÄRTEN UND VERGÜTEN MIT REESE

Unter geregelter Ofenatmosphäre Max. Nutzmaße Ø 5.000 mm x 5.000 mm Wird ein Stahl aus der Austenitphase (d.h. von Temperaturen über 723 °C) schnell abgekühlt, entsteht ein martensitisches Gefüge, das sich durch hohe Härte auszeichnet. Durch das Anlassen erhält der Stahl eine gewisse Zähigkeit zurück. Beim Vergüten erfolgt das Anlassen bei hohen Temperaturen von bis zu 700 °C, um ein optimales Ergebnis aller mechanischen Kennwerte zu erreichen. Dies ist besonders bei Werkstücken sinnvoll, die dynamisch belastet werden und von denen hohe Zähigkeit gefordert wird.
Härten und Vergüten

Härten und Vergüten

Unter geregelter Ofenatmosphäre: Max. Nutzmaße Ø 5.000 mm x 5.000 mm HÄRTEN UN VERGÜTEN Wird ein Stahl aus der Austenitphase (d.h. von Temperaturen über 723 °C) schnell abgekühlt, entsteht ein martensitisches Gefüge, das sich durch hohe Härte auszeichnet. Durch das Anlassen erhält der Stahl eine gewisse Zähigkeit zurück. Beim Vergüten erfolgt das Anlassen bei hohen Temperaturen von bis zu 700 °C, um ein optimales Ergebnis aller mechanischen Kennwerte zu erreichen. Dies ist besonders bei Werkstücken sinnvoll, die dynamisch belastet werden und von denen hohe Zähigkeit gefordert wird.
HÄRTEREI

HÄRTEREI

Schnell. Flexibel. Erstklassig. HWH Härte- und Oberflächentechnik aus Witten Härtetechnik für anspruchsvolle Kunden In unserem modernen Wärmebehandlungszentrum in Witten führen wir seit 1987 bauteilspezifische Wärmebehandlungen an metallischen Werkstoffen durch. Technisch gut beraten, zertifiziert nach DIN EN ISO 9001:2015, erarbeiten wir mit unseren Kunden im Bereich der Entwicklung individuelle Prozessreihen gebettet auf langjährigen Erfahrungswerten und einer Fülle an Know-How. Schnell. Flexibel. Erstklassig. „Wir sind eine wichtige Komponente in der Produktionskette unserer Kunden. Dieser Verantwortung sind wir uns bewusst und deswegen hat unsere höchste Priorität, die pünktliche Lieferung der Werkstücke zum genau richtigen Zeitpunkt. Das nennen wir JUST IN TIME.“ Michael Schuch, Zentrumsleiter Wir sind HWH Das HWH-Leistungsversprechen Flexible Termingestaltung und garantierte Lieferzusage Optimal abgestimmte Wärmebehandlungsverfahren Hochverfügbarer und überregionaler Fahrdienst Eigenes Industrielabor Höchste Transparenz durch unsere Online-Auftragsverfolgung Glassy-State Permanent hoher Qualitätsstandard JUST IN TIME Anfrage Unsere Verfahrenskompetenzen Unsere ausgesprochen hohen Qualitätsstandards und unser ausgeprägtes Umweltbewusstsein sind zertifiziert nach DIN EN ISO 9001:2015 und DIN EN ISO 50001:2011 Einsatzhärten Carbonitrieren Gasaufkohlen Rück- & Wiederaufkohlen Härten Vergüten Schutzgasanlassen Gasnitrieren Gasnitrocarburieren Glühen Alles aus einer Hand JUST IN TIME Anfrage Maschinenbau Werkzeugbau Antriebstechnik Wir sind fast überall zuhause Als Spezialist für präzise Wärmebehandlungen bieten wir unseren Kunden ein breites Portfolio an. Alle Branchen im Überblick Abonnieren Sie jetzt und kostenlos unseren
Ausscheidungshärten

Ausscheidungshärten

Ausscheidungshärten, auch Altern genannt, wird eingesetzt, um die Streckgrenze bestimmter Werkstoffe zu erhöhen. Außerdem wird die Härte der Werkstoffe erhöht. Ausscheidungshärten wird zum Härten von Maraging-Stahl oder anderer Metalle wie Aluminiumlegierungen verwendet. Die zu behandelnden Teile werden zunächst im weichen (lösungsgeglühten) Zustand bearbeitet und dann bei relativ niedrigen Temperaturen ausscheidungsgehärtet, um die gewünschten Eigenschaften zu erzielen. Durch Änderung der Dauer und Temperatur können diese individuell beeinflusst werden.
Vakuumhärten Spezial

Vakuumhärten Spezial

Durch die Verbindung von tiefkühlen und anlassen können auch niedriglegierte Werkzeugstähle im Vakuum gehärtet werden. Auch komplexe Werkzeuge können prozesssicher und verzugsarm behandelt werden. Zur Behandlung niedriglegierter Werkzeugstähle setzen wir spezielle Vakuumverfahren ein, die eine Tiefkühl- und Anlassbehandlung in einem Prozess verbinden. Die Cool Plus Technologie kombiniert einen Anlassofen mit integrierter Tiefkühleinrichtung und verhindert so, dass die behandelten Teile einer Oxidations- und Korrosionsgefahr ausgesetzt werden. Die Tiefkühlbehandlung unterbindet eine schleichende Maßveränderung nach der Behandlung. So können auch komplexe Werkzeuge aus niedriglegierten Werkzeugstählen mit höchstem Anspruch an Maßhaltigkeit und Korrosionsbeständigkeit im Vakuum prozesssicher und verzugsarm behandelt werden. Max. Abmessung: 600 x 900 x 570 mm Max. Gewicht: 600 kg
Laserhärten

Laserhärten

Der Hochleistungsdiodenlaser erzeugt einen präzisen, Laserstrahl. Die zu behandelnde Werkstückoberfläche wird örtlich schnell erwärmt (> 1000 °C/Sekunde) und bis max. 1,5 mm tief umgewandelt. Die Wärmeableitung ins Werkstückinnere bewirkt eine Selbstabschreckung. Es entsteht eine gehärtete Spur mit sehr feinkörnigem Martensit. Ein Anlassen ist nicht notwendig. Vorteile des Laserhärtens. - Konturgetreu, präzis - Verzugsarm, keine Nachbearbeitung nötig - Selbstabschreckend (keine Verunreinigung durch Abschreckmedien) - Beweglich im 3D-Raum - Je nach Teilegeometrie blanke ­Oberflächen durch Härten unter Schutzgas Anwendungsbeispiele: - Steuerkurven - Blech-Umformwerkzeuge - Biegestempel - Anspruchsvolle Maschinenbauteile - Turbinenkomponenten - Führungen und Maschinenbetten - Verschleissflächen und -kanten Anlagenparameter: - 4 kW-Diodenlaser - Härtelängen bis 9000 mm - Spurbreiten bis ca. 30 mm - Kabine 9500 x 5000 x 4000 mm - Bauteilegewicht bis 10 Tonnen
Laserhärten

Laserhärten

PATENTIERTES LASERHÄRTEN Laserhärten ist ein Verfahren zum Härten von Stahl und Eisengusswerkstoffen. An unseren Standorten in Geilenkirchen und Ingolstadt härten wir mit unserem patentierten LBBZ LACID Verfahren Ihre Bauteile. Mit unserem LACID Verfahren arbeiten wir verzugsarmer, chemiefrei und kräftefrei. Die Härtetiefe kann hier über einen Millimeter betragen. Durch die geringe Wärmeeinbringung und der schnellen Durchlaufzeit entfallen potenzielle Vor- und Nacharbeiten. Dadurch können wir schnell und kontrolliert Ihre Bauteile härten.
Laserhärten

Laserhärten

Das Laserhärten ermöglicht das lokale und verzugsarme Randschichthärten von Gussteilen mit hoher Geschwindigkeit.
Laserhärten

Laserhärten

Das Randschichthärten mittels Laser zeichnet sich als ein sehr flexibles und verzugsarmes Tool aus. Härten Das Laserhärten zeichnet sich als ein flexibles und für den Werkstoff schonendes/verzugsarmes Verfahren aus. Es handelt sich hier um ein lokales Härteverfahren, dass in Abhängigkeit vom Werkstoff und Einsatzfall ausgewählt werden muss. Die Härtebahnen werden überlappend auf der Oberfläche aufgebracht. Zur besseren Ankopplung wird ein Coating aufgebracht. Folgende Werkstoffe sind geeignet: - C45 vergütet - 42 Cr Mo V vergütet - 100 Cr 6 - C60
Vakuumhärten

Vakuumhärten

Eine Vielzahl hochlegierter Stähle und Edelstähle können nur unter sauerstofffreier Atmosphäre gehärtet bzw. geglüht werden. Dies geschieht in sogenannten Vakuumöfen in Temperaturbereichen bis zu 1200 °C, abgeschreckt wird mit gasförmigem Stickstoff. Bedingt durch die Ofen- und Prozesstechnik sind die Werkstückverzüge im Vergleich zum Schutzgashärten gering. Das Härtegut kommt in die kalte Ofenkammer, wird über vorbestimmte Temperatur-/Zeitprogramme erhitzt und dann unter hohem Stickstoffdruck abgehärtet. Durch den fehlenden Luftsauerstoff ist eine Reaktion an den Bauteiloberflächen nicht möglich. Das Ergebnis sind metallisch blanke Bauteile. Das Vakuumhärten findet bei H+W in Vakuumöfen verschiedener Abmessungen statt. Gängige Werkstoffe: - Werkzeugstähle (wie z.B. 1.2379, 1.2343, 1.2436, 1.2767) - Schnellarbeitsstähle (wie z.B. 1.3343) - VA-Stähle (wie z.B. 1.4034, 1.4112)
Vakuumhärten

Vakuumhärten

Eine Vielzahl hochlegierter Stähle und Edelstähle können nur unter sauerstofffreier Atmosphäre gehärtet bzw. geglüht werden. Dies geschieht in sogenannten Vakuumöfen in Temperaturbereichen bis zu 1200 °C, abgeschreckt wird mit gasförmigem Stickstoff. Bedingt durch die Ofen- und Prozesstechnik sind die Werkstückverzüge im Vergleich zum Schutzgashärten gering. Das Härtegut kommt in die kalte Ofenkammer, wird über vorbestimmte Temperatur-/Zeitprogramme erhitzt und dann unter hohem Stickstoffdruck abgehärtet. Durch den fehlenden Luftsauerstoff ist eine Reaktion an den Bauteiloberflächen nicht möglich. Das Ergebnis sind metallisch blanke Bauteile. Das Vakuumhärten findet bei H+W in Vakuumöfen verschiedener Abmessungen statt. Gängige Werkstoffe: Werkzeugstähle (wie z.B. 1.2379, 1.2343, 1.2436, 1.2767) Schnellarbeitsstähle (wie z.B. 1.3343) VA-Stähle (wie z.B. 1.4034, 1.4112)
Härtereien, Wärmebehandlungen

Härtereien, Wärmebehandlungen

Härtereien, Ofenverfahren: Kernhärten, Vergüten, Glühen, Einsatzhärten, Salzbadhärten, Salzbadnitrieren, Tiefkühlen, Induktivhärten, Kippofen, Härten im Schutzgas, Einsatzhärten, Rüttelherdofen Härtereien, Wärmebehandlungen Salzbadhärten, Die Gewinde Ziegler AG hat mit ihrem Neubau der Härterei 2019, den Prozess des Salzbadhärtens vollständig automatisiert. Diese Automatisierung und langjähriges Salzbad-Knowhow führt zu beständigen Härteergebnissen. Das Salzschmelzen hat diverse Vorteile die andere Wärmebehandlungsverfahren nicht aufweisen. In erster Linie ist die Temperaturgleichmässigkeit zu nennen. Die Wärme wird bei der Salzbadwärmebehandlung nicht wie beim atmosphärischen Verfahren (Gas und Vakuum) durch Strahlung und Konvektion übertragen, sondern durch Wärmeleitung über den Kontakt des schmelzflüssigen Mediums mit der Bauteiloberfläche. Dadurch wird die Wärme dem Behandlungsgut sehr schnell zugeführt oder entzogen. Die Wärmebehandlung in Salzschmelzen erfolgt zügig und wegen des gleichmässigen Wärmeübergangs dennoch verzugsarm. Tefkühlen, Durch Umwandlung von Restaustenit in Martensit und die Ausscheidung feiner Karbide bietet die Tiefkühlbehandlung folgende wichtige Vorteile: Verbesserte Härte, Masshaltigkeit, Höhere Verschleissfestigkeit, Verlängerte Lebensdauer von Teilen Induktivhärten, Die induktive Erwärmung wird mit sehr hoher Leistungsdichte direkt im Bauteil erzeugt. Dabei wird der zu härtende Bereich sehr rasch auf Härtetemperatur gebracht und unmittelbar danach abgeschreckt. Je nach geforderter Einhärtetiefe und Bauteilgeometrie werden unterschiedliche Generatoren (Frequenzen) eingesetzt. Es wird zwischen drei Arten unterschieden: Hoch-, Mittel- und Zweifrequenzgeneratoren. Abhängig von Werkstoff- und Härteparameter steht eine Vielzahl an Abschreckmedien zur Optimierung der Härteergebnisse zur Verfügung, wie beispielsweise bis zu drei verschiedene Polymer-Konzentrationen auf unterschiedlichen Anlagen. Ofenverfahren, In unseren Schachtaufkohlungsofen mit Begasungseinrichtung können wir folgende Verfahren anwenden: Kernhärten, Vergüten, Glühen, Einsatzhärten
Einsatzhärten

Einsatzhärten

Durch das Einsatzhärten von normalerweise kohlenstoffarmen Stählen (legiert oder unlegiert), erhalten diese eine harte und verschleissfeste Randschicht, sowie einen zähen Kern. Außerdem besteht die Möglichkeit, die Bauteile partitiell zu schützen (durch Schrauben oder Paste), damit diese Bereiche anschliessend noch mechanisch bearbeitet werden können. Für die Einsatzhärtung geeignete Stähle sind in der DIN EN 10084:1998-06 aufgeführt. Das Einsatzhärten wird bei uns im Gaskohlungsofen mit PC-gesteuerter Prozessregelung durchgeführt.
Einsatzhärten, Aufkohlen und Vergüten

Einsatzhärten, Aufkohlen und Vergüten

Sehr hohe Flexibilität, Gleichmäßigkeit und Reproduzierbarkeit: Mehrzweckkammeröfen bieten zahlreiche Vorzüge und werden in der Wärmebehandlung vielfältig eingesetzt. Dabei werden die Bauteile zunächst unter geregelter Schutzgasatmosphäre behandelt und anschließend mit unterschiedlichen Ölen im integrierten Ölbad abgeschreckt. In unseren Anlagen decken wir dabei das komplette Spektrum ab – vom Glühen über Härten, Vergüten, Aufkohlen und Einsatzhärten bis hin zum Carbonitrieren. Diese Verfahren bieten wir an den Standorten Witten und Wilthen an. Nachhaltigkeitsfaktor: Dank modernster Beheizungs- bzw. Brennertechnik ermöglichen wir eine gute Energieeffizienz im gesamten Prozess. VORTEILE Sehr hohe Flexibilität Hohe Gleichmäßigkeit Sehr gute serielle Reproduzierbarkeit der Ergebnisse Vollautomatisierung erlaubt Fertigung rund um die Uhr
Vakuumhärten

Vakuumhärten

Minimaler Verzug – maximale Reproduzierbarkeit. Das Vakuumhärten eignet sich besonders für stark verzugsempfindliche Präzisionsbauteile, da als Abschreckmedium der moderat wirkende Reinstickstoff verwendet wird. In Vakuumanlagen werden mittel- und hochlegierte Werkzeugstähle, Warm- und Schnellarbeitsstähle sowie martensitische, korrosionsbeständige Stähle bei Temperaturen von bis zu 1300° C gehärtet. Neben der Verzugsarmut zeichnen sich im Vakuum gehärtete Werkstücke durch eine optimale Korrosionsbeständigkeit aus, da Oxydationen im Vakuum nicht stattfinden. Vakuumgehärtete Teile sind daher absolut blank. Durch Veränderung des Abschreckdrucks und der Richtung des Kühlgasstroms kann für jedes Werkstück der optimale Härteprozess exakt eingestellt werden. Über ein elektronisches Prozessleitsystem wird eine 100%ig reproduzierbare Qualität gesichert.
Neutralhärten im Vakuum

Neutralhärten im Vakuum

Das Erwärmen auf Härtetemperatur erfolgt in allen unseren Anlagen unter Vakuum bzw. unter Konvektion, wobei mit Inertgasen wie Stickstoff oder Argon gearbeitet wird. Dies bringt erhebliche Vorteile durch den Entfall bzw. die drastische Reduzierung von nachgelagerten Hartbearbeitungsoperationen, da die Bauteile eine randentkohlungs- und randoxidationsfreie Oberfläche aufweisen und dadurch endkonturnah vorgearbeitet werden können. Zusammen mit der folgenden, trockenen Abschreckung mit bis zu 20 bar Helium- oder Stickstoffüberdruck in einer separaten, kalten Abschreckkammer ergeben sich hinsichtlich der Bauteilqualität folgende entscheidende Vorteile gegenüber der konventionellen Wärmebehandlung mit Öl-, Salz- oder Polymerabschreckung: • randentkohlungs- und randoxidationsfreies Gefüge • metallisch blanke Oberflächen • trockene Bauteile, eine aufwendige Nachreinigung entfällt • Restschmutz auf den Bauteilen ist minimal • i.d.R. geringere und reproduzierbarere Maß- und Formänderungen Abhängig von der Wandstärke können typische Vergütungsstähle, wie 42CrMo4 und 50CrMo4 aber auch Wälzlagerstähle oder unlegierte Kohlenstoffstähle, problemlos vollmartensitisch gehärtet werden. Höherlegierte Vergütungs- und Werkzeugstähle sind generell bestens für eine Vakuumwärmebehandlung in unseren Anlagen geeignet.
Vakuumhärten

Vakuumhärten

Mit dem umweltfreundlichen Verfahren der Vakuumtechnik werden mittel- bis hochlegierte Stähle gehärtet. Bei verzugsempfindlichen Werkstücke lassen sich hier ausgezeichnete Resultate erzielen. Mit dem umweltfreundlichen Verfahren der Vakuumtechnik werden mittel- bis hochlegierte Stähle gehärtet. Es ist das thermische Verfahren, mit dem sich insbesondere bei verzugsempfindlichen Werkstücken ausgezeichnete Resultate erzielen lassen. Mit präzise kontrollierbaren Parametern und viel Praxiswissen sorgen wir für hochwertige Ergebnisse in Serie. Die Anwendungsbereiche Automobilindustrie | Medizintechnik | Luft- und Raumfahrtindustrie Elektroindustrie | Textilindustrie | Maschinenbau | Werkzeugbau Die Werkstoffgruppen Mittel- bis hochlegierte Stähle
Härterei

Härterei

Wir bieten Ihnen von der Idee bis zur Serienreife spezifische, auf Ihren Bedarf zugeschnittene Lösungen in der Stanz-Biegetechnik
Einsatzhärten

Einsatzhärten

Kohlenstoffarme Stähle (C<0,25%) sind zäh, gut zerspanbar und gut schweißbar, jedoch nicht härtbar. Wir können in unseren aufkohlenden Salzbädern die Randschicht des Bauteiles definiert mit Kohlenstoff anreichern (z.B. 0,5 mm). Danach werden die aufgekohlten Teile auf Härtetemperatur erwärmt und im Warmbad verzugsarm abgeschreckt. Dadurch entsteht eine harte und verschleißbeständige Oberfläche und ein zäher Kern. Unsere Anlagengrößen Salzbäder Ø 500 mm Tauchtiefe 750 mm Kammerofen groß (l/b/h) 1400 / 750 / 400 Kammerofen klein (l/b/h) 500 / 500 / 400 Maximal Härtetemperatur 900°C
Härten und Einsatzhärten

Härten und Einsatzhärten

Die Wärmebehandlung von Einsatz- und Werkzeugstählen kann bei optimalen Bedingungen in der Salzschmelze durchgeführt werden. Hierbei werden die Teile bis auf max. 950°C erwärmt. Nach der Wärmebehandlung erfolgt die Warmbadabschreckung für weitgehend verzugsfreies Härten. Wir verfügen über mehrere Salzbadhärteanlagen: • Salzbadhärteanlage mit 0,8% Kohlenstoff zum Einsatzhärten von Maschinenbauteilen mit anschließender Warmbadabschreckung. • Salzbadhärteanlage für Verschleißteile wie Formwerkzeuge (z.B. für die Kalksandsteinherstellung) mit Langzeitaufkohlung bei 1,1% Kohlenstoff zusätzlich perlitischer Gefügeumwandlung • Salzbadhärteanlage für Langteile wie Führungsschienen bis zu 1800 mm ohne Aufkohlung und anschließender Abschreckung im Warmbad. Hierbei wird eine Gradlinigkeit unter 0,1 mm erreicht, was für die spätere Fertigbearbeitung von großem Vorteil ist. Aber nicht nur Langteile, sondern auch Kleinteile und Kleinstteile können in unserer Härteanlage verarbeitet werden.
Einsatzhärten

Einsatzhärten

Einsatzhärten nach Ihren Anforderungen Ziel des Einsatzhärtens ist ein weicher und zäher Kern bei gleichzeitig harter Oberfläche des Werkstoffs. Die Randschicht des Werkstücks wird in einem geeigneten Aufkohlungsmedium mit Kohlenstoff angereichert. Durch die Diffusion des Kohlenstoffs von der angereicherten Randschicht in den Kern stellt sich ein Kohlenstoffprofil ein, das typischer weise einen mit zunehmendem Randabstand zum Kern hin abnehmenden Verlauf des Kohlenstoffgehaltes aufweist. Im Anschluß an die Aufkohlungwird das Härten und Anlassen durchgeführt. Hierdurch wird die Randhärte und Einsatzhärtungstiefe eingestellt. • Zum Einsatzhärten eignen sich kohlenstoffarme Stähle mit 0.10 - 0.15 % Kohlenstoffgehalt (C), sowie niedriglegierte Stähle, deren C-Gehalt bis zu 0,20% beträgt. • Um die Außenschicht dieser Stähle härten zu können, muß ihr Kohlenstoff zugeführt werden • Dies geschieht durch kohlenstoffabgebende gasförmige Einsatzmittel (Propan) in Kammer oder Bandofenanlagen
Lohnbearbeitung Härten und Brünieren

Lohnbearbeitung Härten und Brünieren

Ganz gleich ob Kleinteile im Durchmesserbereich unter 10 mm oder meterlange Zylinder: NAGEL hat den passenden Maschinenpark, die Werkzeuge und das Prozesswissen, um Ihre Teile perfekt zu bearbeiten. Härten und Brünieren Als Lohnfertiger im Bereich Härten und Brünieren haben wir jahrzehntelange Erfahrung im Maschinen und Anlagenbau. Hier werden unser Fachwissen und unsere Zuverlässigkeit als kompetenter Partner bereits seit über 50 Jahren von unseren Kunden geschätzt Beratung, Flexibilität, Qualitätsbewusstsein und Termintreue sind unsere obersten Prioritäten, die bei unseren langjährigen Stammkunden sehr geschätzt werden. Die langjährige Erfahrung unserer Meister und Fachkräfte werden durch Weiterbildungen für Galvanische Oberflächenbehandlung und Wärmebehandlung abgerundet. Somit stehen wir unseren Kunden als (Technologie-) Berater und als Problemlöser jederzeit zur Verfügung. Durch die Anforderungen bei der Herstellung unserer eigenen Produkte, haben wir uns sowohl auf Einzel- und Kleinserienfertigung spezialisiert. Die Chargierung kann so flexibel gestaltet werden, dass sowohl größere als auch kleine filigrane Werkstücke behandelt werden können. Oft sind es die kleinen Werkstücke, die besonderen Belastungen standhalten müssen. Die Terminabstimmung mit unseren Kunden läuft unkompliziert und direkt, um flexibel und schnell auf die gewünschten Anforderungen reagieren zu können. Einsatzhärten CHD (EHT) = max. 1,5 mm Karbonitrieren CHD (EHT) bis 0,3mm Nitrocarburieren VS 15-20 µm = NHD = 0,2mm Aufkohlen CHD (EHT) = max. 1,5 mm Härten neutral bis max. 950 °C Vergüten bis max. 950 °C Glühen bis 650°C Anlassen bis 650°C Zusätzlich bieten wir Sandstrahlen, Richten und Gleitschleifen an um möglichst einbaufertige Teile für unsere Kunden bereitstellen zu können. Unsere Qualitätssicherung beim Härten erfolgt durch Härteprüfung nach Rockwell, Vickers und Brinell. Die Qualitätssicherung beim Brünieren erfolgt durch Sichtkontrolle sowie regelmäßige Prüfung der Bäder in Laboren und Instituten.
Vakuumhärtung

Vakuumhärtung

Mit unserer Hochtemperatur-Vakuumanlage neuster Technologie (600 x 600 x 900 mm3) können Werkzeugstähle, Schnellarbeitsstähle, Warmarbeitsstähle und Kaltarbeitsstähle wärmebehandelt werden. Die Erwärmung der Anlage geschieht mit dem Medium Stickstoff unter Vakuumbedin­gungen. Der Wasserdampfpartialdruck und der Sauerstoffgehalt ist dabei so gering, dass die in unserer Anlage behandelten Werkstücke nach dem Anlassen in nichtoxidierender Form, d.h. metallisch blank, entnommen werden können. Ein besonderer Vorteil des Verfahrens liegt in der gleichmäßigen gestuften Erwärmung, Durchwärmung und Abschreckung, was zu einem gegenüber anderen Verfahren gering­eren Verzug führt. Dagegen entsteht z.B. bei der Salzbadhärtung beim Eintauchen in das Bad ein hohes Temperaturgefälle zwischen Kern und Rand, weshalb der Verzug dann erheblich höher ist. Untersuchungen an vakuumgehärteten Werkstücken zeigen, dass gleiche oder bessere Härtewerte gegenüber Salzbadhärtungen erreicht werden können. Die Anlage kann auch zum Hochtemperatur-Vakuumhartlöten benutzt werden. Hochlegierte Stähle sind wegen der Abkühlcharakteristik besonders gut geeignet für eine verzunderungsfreie Härtung im Hochvakuum, so z.B. 1.2379, 1.2767, 1.2343, 1.2344 1.2363, 1.3343, 1.2080 1.2083 1.4236 1.2510 1.2842 1.2601 1.2631 1.2731 1.4112 1.4122 1.403 u.a. Auch Schnellarbeitsstähle aller Sorten können vergütet werden, z.B. 1.2369, 1.3206, 1.3343 u.a.
Einsatzhärten

Einsatzhärten

Einsatzhärten Unter Einsatzhärten versteht man das Aufkohlen, Härten und Anlassen eines Werkstücks aus Stahl. Ziel des Einsatzhärtens ist ein weicher und zäher Kern bei gleichzeitig harter Oberfläche des Werkstoffs. Die Randschicht des Werkstücks wird in einem geeigneten Aufkohlungsmedium mit Kohlenstoff angereichert. Durch die Diffusion des Kohlenstoffs von der angereicherten Randschicht in den Kern stellt sich ein Kohlenstoffprofil ein, das typischerweise einen mit zunehmendem Randabstand zum Kern hin abnehmenden Verlauf des Kohlenstoffgehaltes aufweist. Im Anschluss an die Aufkohlung wird das Härten und Anlassen durchgeführt. Hierdurch werden die Randhärte und Einsatzhärtungstiefe eingestellt.
Einsatzhärten

Einsatzhärten

Das älteste thermochemische Wärmebehandlungsverfahren zur Optimierung der Verschleissfestigkeit der Randzone. Der gewünschte Effekt wird durch die Einlagerung von Kohlenstoffatomen in die Gitterstruktur des Grundwerkstoffs erreicht. Bei der PYRODUR AG werden bei diesem Verfahren modernste, programmgesteuerte Gasaufkohlungsanlagen im 24-Stunden-Betrieb eingesetzt.
Einsatzhärten

Einsatzhärten

Bei der Fertigung von Werkstücken ist das Wärmebehandeln von besonderer Bedeutung. In Zusammenarbeit mit unseren Wärmebehandlungspartnern führen wir das Einsatz- und Induktivhärten sowie das Gas- bzw. Badnitrieren durch.
Einsatzhärten

Einsatzhärten

Das Einsatzhärten zählt zu den thermochemischen Verfahren. Im Rahmen dieses Verfahrens wird die Randschicht von Bauteilen und Werkzeugen mit einem Kohlenstoff abgebenden Medium aufgekohlt und anschließend abgehärtet. Hierdurch werden die mechanischen Eigenschaften der Bauteilrandschicht (z.B. Verschleißresistenz) verbessert. Die Abschreckung kann entweder direkt aus der Aufkohlungstemperatur oder nach einem Absenken auf eine werkstoffspezifische Härtetemperatur erfolgen. Dies sind nur zwei Varianten möglicher Temperatur-Zeit-Folgen beim Einsatzhärten. Das Aufkohlen erfolgt in der Regel zwischen 880 °C bis 960 °C. Nach dem Abhärten der aufgekohlten Bauteile ist überwiegend ein Anlassen erforderlich, um die aus der Härtung entstandenen Spannungen zu mindern und die geforderten Gebrauchsfestigkeiten einzustellen. Für das Einsatzhärten stehen uns die Anlagentechniken RTQ10S, TQF17S der Firma Ipsen (siehe technische Daten) zur Verfügung. Durch geeignete Isoliertechniken ist es möglich, partielle Bereiche vor dem Aufkohlen zu schützen. Aufgekohlt wird im Schutzgas. Als Abschreckmedium wird ein speziell abgestimmtes Härteöl eingesetzt. Obwohl grundsätzlich alle Eisenwerkstoffe mit niedrigen Kohlenstoffgehalten einsatzgehärtet werden können, sind es doch in erster Linie die so bezeichneten Einsatzstähle, die zum Einsatzhärten verwendet werden. Sie sind nach DIN EN 10084 gekennzeichnet und haben einen Kohlenstoffgehalt von rund 0,1 % bis 0,3 %. Als Beispiel seien genannt: 1.7131 (16MnCr5) und 1.6587 (18CrNiMo7-6). Das Einsatzhärten dient dazu, der Randschicht von Werkstücken und Werkzeugen aus Stahl eine wesentlich höhere Härte und den Werkstücken und Werkzeugen bessere mechanische Eigenschaften zu verleihen. Einsatzgehärtete Bauteile und Werkzeuge zeichnen sich durch erhöhten Verschleißwiderstand, einen zähen Kern sowie durch eine erhöhte Biegewechselfestigkeit aus. Diese Eigenschaften sind vor allem bei Getriebeteilen erwünscht. Zur Durchführung des Einsatzhärtens benötigen wir von Ihnen folgende Angaben: • Werkstoffbezeichnung • Einsatzhärtetiefe mit Toleranzbereich • Sollwerte Randhärte mit Toleranzbereich • ggf. Isoliervorschrift (z.B. Werkstückbezeichnung mit Angaben der Stellen, die nicht aufgekohlt werden sollen) • ggf. festgelegte Prüfpunkte
Einsatzhärten

Einsatzhärten

Kohlenstoffarme Stähle sind zäh, eignen sich hervorragend zur spanenden Bearbeitung und zum Schweißen, sind jedoch nicht martensitisch härtbar. Dabei wird in der Praxis gerade von diesen Stählen zusätzlich eine harte und verschleiß-beständige Oberfläche gefordert. Ziel des hier zur Anwendung kommenden Einsatzhärtens ist eine harte, verschleißfeste Oberfläche bei gleichzeitig hoher Zähigkeit und Dehngrenze im Kernbereich. Es ist ein altes, auch heute noch häufig angewendetes Wärmebehandlungsverfahren. Dem eigentlichen Härte-prozess wird dabei ein Aufkohlen vorausgeschickt. Nach dem Einsatzhärten können die Werkstücke noch angelassen werden, um Spannungen abzubauen.
Einsatzhärten

Einsatzhärten

max. Chargengewicht 1000 kg