Finden Sie schnell thrombozytenspiegel für Ihr Unternehmen: 371 Ergebnisse

Taschenlampe REFLECTS-KALISPELL

Taschenlampe REFLECTS-KALISPELL

Sie suchen ein preisgünstiges, praktisches Giveaway mit auffälliger, unkomplizierter Werbemöglichkeit? Dann ist diese Taschenlampe mit Doppel-LED (7 Lumen) und seitlichem COB-Licht (72 Lumen) genau das Richtige für Sie! Mit UV-Druck können Sie bei geringen Kosten großflächig fotorealistische, detaillierte Werbemotive umsetzen! Kunststoff, weiß, Batterie inklusive, Karabiner, LED-Farbe weiß Artikelnummer: 1092874 Druckbereich: 60 x 25 Zolltarifnummer: 85131000 Gewicht: 35,9 g
Winkelschliessblech HT S21

Winkelschliessblech HT S21

Winkelschliessblech HT S21 200x22x22x2 mm rund, silber lackiert DIN Ls/ Rs verwendbar 0010.000066 Artikelnummer: E9402323 Gewicht: 0.1 kg
Hochleistungsheizpatrone HHP

Hochleistungsheizpatrone HHP

Hochleistungsheizpatrone HHP
Stapelbehälter: Sil 8622

Stapelbehälter: Sil 8622

Stapelbehälter mit einer Außenabmessung von 800 x 600 x 220 mm. Der Stapelbehälter Sil 8622 von Walther Faltsysteme GmbH hat eine Außenabmessung von 800 x 600 x 220 mm und eine Innenmaße von 752 x 552 x 216 mm. Jeder der Behälter hat ein Gewicht von ungefähr 4,4 Kilogramm und kann Volumen bis zu 90 L verarbeiten. Für dieses spezifische Modell wurde das Material von PP verwendet. Modell: Sil 8622 Außenmaße (ca.): 800 x 600 x 220 mm Innenmaße (ca.): 752 x 552 x 216 mm Gewicht (ca.): 4,4 kg Nutzvolumen (ca.): 90 Liter
Chemiepaletten

Chemiepaletten

Chemiepaletten von CP1 bis CP9. Sowohl neu, als auch gebraucht. Abmessungen: 1200x1000mm Bezeichnung: CP1
Klinische Chemie

Klinische Chemie

Bei uns finden Sie ein breites Produktportfolio für die Analyse chemischer Kenngrößen in Kliniken und Laboren. Zusätzlich zur Bestimmung chemischer, physiologischer und biochemischer Vorgänge bieten wir auch Geräte zur Spezialdiagnostik sowie diverse Reagenzien an. So können Ärzte und Labore eine schnelle Aussage über den Verlauf bestimmter Krankheiten treffen.
Reinigung von Industrieabluft

Reinigung von Industrieabluft

Am Beispiel einer Industrieabluftanlage (CS 40 bis 5600) soll kurz und anschaulich das Funktionsprinzip unserer katalytischen Abluftreinigung dargestellt werden. Funktionsskizze CS Modelle 90-5600, Beispielmodell 350 Die mit Schadstoffen belastete Abluft wird durch eine Absaugvorrichtung oder durch Konvektion in den Katalysator eingeleitet. Bei Abgastemperaturen unterhalb von 200°C wird der Luftstrom durch einen Elektrowärmetauscher auf die für den katalytischen Nachverbrennungsprozess nötigen 200°C aufgeheizt. Nach der Aufheizung wird zunächst eine katalytische Opferschicht durchströmt, welche pro Jahr zwei mal zu wechseln ist (liegt ein extrem hoher Anteil an Schwefel oder Schwermetallen im Abgas vor, kann sich die Zahl der nötigen jährlichen Wechsel erhöhen). Nach der Opferschicht wird der Wabenkatalysator durchströmt. Die in der Anlage entstehenden Druckverluste werden durch einen Zugventilator bzw. ein Venturirohr am Katalysatorausgang ausgeglichen. Die zur Oxidation der Schadstoffe nötige Sauerstoffmenge wird entweder dem Abgasstrom entzogen oder durch regelbare Klappen eingeleitet. Der Austausch der Katalysatoren und der Opferschicht ist durch die Verwendung standardisierter Bauteile vor Ort schnell und einfach mit Standardwerkzeug möglich. Bei der Auslegung der Baugröße der katalytischen Abluftreinigung muss sowohl der Gesamtvolumenstrom (Nm³/h), als auch der Schadstoffstrom (g/min) beachtet werden. Der Gesamtvolumenstrom setzt sich dabei aus dem Normvolumenstrom der Abluft und dem zugeführten Kühlluftstrom zusammen. Beim Kühlluftstrom handelt es sich um die Luftbeimengung die zur Erhöhung der Luftsauerstoffkonzentration, oder Begrenzung der Katalysatortemperatur benötigt wird. Neben dem Gesamtvolumenstrom ist der Schadstoffstrom bei der Auslegung zu beachten. Der Katalysator ist dabei nach dem Maximalwert der flüchtigen Kohlenwasserstoffe auszuwählen. Werden beispielsweise in einem Brennzyklus von 10 h durchschnittlich 18 g/min frei und der Volumenstrom liegt unterhalb von 90m³/h, ist eine CS 90 ausreichend. Wird allerdings in einem Zeitintervall von 1-2 Stunden ein Schadstoffstrom von ca. 20-40 g/min freigesetzt, ist eine CS 200 auszuwählen. Übersteigt der Schadstoffstrom die Maximalwerte, werden die Schadgase nur unvollständig oxidiert, oder es kommt zu einer Überhitzung des Katalysators. Auslegungsdiagramm Katalysatorgröße Checkliste Anlagenauslegung Industrie Auslegungsdaten CS Industrie-Kat..pdf .pdf Datei [63.9 KB] Sprache auswählen Industrieanlagen Biogasmotoren Druckversio
Anwendungsgebiete der Härteprüfung

Anwendungsgebiete der Härteprüfung

Unsere Härteprüfdienstleistungen eignen sich für eine Vielzahl von Branchen. Wir bieten auch maßgeschneiderte Härteprüfdienstleistungen an, die auf die spezifischen Anforderungen und Bedürfnisse unserer Kunden zugeschnitten sind. Unsere Experten sind hochqualifiziert und verfügen über langjährige Erfahrung in der Durchführung von Härteprüfungen. Wir stellen sicher, dass alle unsere Härteprüfungen nach den höchsten Standards durchgeführt werden und die Ergebnisse präzise und zuverlässig sind.
Flexible Polymere

Flexible Polymere

Compoundierung Extrusionsbeschichtung Folie Kabel Compounds Recycling Schaumstoffe Schmelzklebstoffe Spritzguss Bitumen & Asphalt Asphalt Modifikation Bitumen Modifikation Dünen & Sandstraßen Farbiger Asphalt Fasern in Splittmastixasphalt Hartbitumen für Gussasphalte Reparaturasphalt Vorbituminierte Armierung Wachs zur Viskositätsabsenkung Abdichtungslösungen Brücken Deponie Hochbau Schwimmbad Tiefbau Tunnel Wasserspeicher und Kanal Landwirtschaft Pflanzenwachstum
Technologie Quarzfilter

Technologie Quarzfilter

Einführung Monolithische Quarzfilter Diskrete Quarzfilter Lineare Phasenfilter LC-Filter Elektrische Parameter von Filtern SAW-Filter Einführung Quarzfilter sind elektromechanische Filter, hergestellt aus hochwertigen Schwingquarzen. Sie nutzen den Piezoelektrischen Effekt um mittels Resonanz bestimmte Frequenzanteile eines Signalgemisches zu selektieren. Quarzfilter werden in der Regel als Bandpassfilter angeboten. Je nach Anwendungsgebiet können Quarzfilter grob in folgende fünf Kategorien eingeteilt werden: Monolithische Quarzfilter Der monolithische Quarzfilter zeichnet sich dadurch aus, dass mehrere Elektrodenpaare auf derselben Quarzscheibe (Blank) angebracht sind. Diese sind über die Quarzscheibe mechanisch miteinander gekoppelt, wodurch sich zusätzliche Resonanzmoden ergeben. Bei der symmetrischen Mode schwingen beide Resonatoren gleichphasig, bei der asymmetrischen Mode schwingen die die Resonatoren gegenphasig zueinander. Durch die Aufbringung von mehr als zwei Elektrodenpaaren könne auch mehrpolige Filter hergestellt werden. Diskrete Quarzfilter Diskrete Quarzfilter sind diskret aufgebaute elektrische Netzwerke, welche aus mehreren Schwingquarzen, Induktivitäten und Kapazitäten bestehen. Die von der KVG gelieferten Quarzfilter sind überwiegend Bandpassfilter mit Tschebyscheff-Charakteristik (theoretische Welligkeit 0,1 dB). Je nach Auswahl im Sperrbereich und der Restwelligkeit im Durchlassbereich kann zwischen Tschebyscheff- und Butterworth-Charakteristik (theoretische Restwelligkeit 0 dB) gewählt werden. Lineare Phasenfilter Um eine verzerrungsarme Übertragung von Signalen und Impulsen zu erreichen, sind Kristallfilter mit linearem Phasengang oder geringer Gruppenlaufzeitverzerrung erforderlich. Diese linearen Phasenfilter (Gauß- oder Bessel-Charakteristik) haben jedoch geringe Auswahlmöglichkeiten. Durch verschiedene Übertragungsfunktionen (Gauß 6 dB, Gauß 12 dB, EQR) zwischen Linearphasen- und Selektionsfilter kann eine bessere Selektivität erreicht werden, ohne die Gruppenlaufzeit im Durchlassbereich wesentlich zu verändern. LC-Filter LC-Filter sind eine Kombination aus Spulen und Kondensatoren anstelle eines Quarzes. Diese Filter bieten einen viel breiteren Durchlassbereich mit nahezu demselben Formfaktor wie Quarzfilter. Ein weiterer Vorteil ist die geringere Störanfälligkeit eines LC-Filters. Ein Nachteil ist die höhere Temperaturanfälligkeit von LC-Filtern aufgrund der Temperaturabhängigkeit der Eigenschaften von Spulen und Kondensatoren. Elektrische Parameter von Filtern A) Einfügungsdämpfung Zur Messung der Einfügungsdämpfung wird der Prüfadapter kurzgeschlossen und die imaginären Impedanzen werden bei der entsprechenden Mittenfrequenz kompensiert. Der sich daraus ergebende Dämpfungswert ist der entsprechende Bezugspunkt 0. Wenn die Filter in den Prüfadapter eingesetzt werden, ist die Einfügedämpfung die Differenz zwischen dem Mindestdämpfungswert des Filters und dem Bezugspunkt. B) Der Durchlassbereich zwischen zwei Frequenzen (f1, f2), in dem die Dämpfung gleich oder größer als ein bestimmter Wert sein sollte. Der Durchlassbereich bezieht sich meist auf die 3-dB- oder 6-dB-Punkte. C) Die Welligkeit des Durchlassbereichs ist die Differenz zwischen der maximalen und der minimalen Dämpfung im Durchlassbereich bzw. in einem bestimmten Bereich des Durchlassbereichs. D) Bereich, in dem die Restwelligkeit angegeben ist. Die KVG gibt diesen Bereich mit 80% der 3 dB-Bandbreite an. E) Der Sperrbere
Oxidationskatalysator

Oxidationskatalysator

Bei Dieselmotoren werden Oxidationskatalysatoren eingesetzt. Der Aufbau dieser Katalysatoren entspricht prinzipiell dem des Ottomotors. Der Unterschied besteht lediglich in der Beschichtung. Der Oxidationskatalysator oxidiert wirkungsvoll Kohlenmonoxid (CO) und Kohlenwasserstoffe (HC). Aufgrund des Verbrennungsverfahrens mit Luftüberschuss, also Lambda (λ) > 1, und des damit verbundenen hohen Restsauerstoffanteils im Abgas, ist eine Reduktion der Stickoxide (NO) jedoch nicht möglich.
Drucksensoren

Drucksensoren

Bestell Nr. Druck Bereich Temperaturdrift (ppm/C°) min. typ. max. D500m 0 - 500 mbar ±300 ±500 D2500m 0 - 2,5 bar ±200 ±300 0 - 8 bar ±100 ±200 0 - 40 bar ±100 D200 0 - 200 bar D500 0 - 500 bar D1500 0 - 1500 bar Temperatur-Einsatz-Bereich für Sensoren: bis max. +350°C. Einsatz bei unter 0° C auf Bestellung. Ausführungstabelle Druck Sensor Kraft Sensor Bestell Nr. Zeichnungs-Nr. Höhe in mm Bestell-Nr. Zeichnungs-Nr. Bauhöhe mit Edelstahl- plättchen D500m 1,4mm K5cN 4 oder 6 4,5 - 5mm * D2500m 1,4 mm K30cN 4 oder 6 4,5 -5 mm * 1,4 mm 4 oder 6 4,5 -5 mm * 1,4 mm K15N 4 oder 6 4,5 -5 mm * D200 1,4 mm K50N 3, 4, 5, 6 4,5 -5 mm D500 1 oder 2 1,4 mm K100N 3 oder 5 5,0 mm D1500 1 oder 2 1,4 mm K1500N (1, 2) oder 7 6,5 mm ● auf Wunsch: mit geringerer Bauhöhe lieferbar. Sensor Zeichnungen
Schadensanalysen

Schadensanalysen

Übersicht eines Bruches bei 60-facher Vergrößerung unter dem REM Um die Ursache eines Materialversagens zu bestimmen, können mithilfe des Rasterelektronenmikroskop (REM) zur Schadensfallanalytik oder ähnlichen Überprüfungen.
Festigkeitsprüfung

Festigkeitsprüfung

Matratzen-Alterungsprüfstand (Zacher Components) Schaumstoff-Alterungsprüfstand (IHD) Material-Prüfmaschinen (Hegewald & Peschke) Universal-Möbelprüfstände (Hegewald & Peschke)
Leiterplatten mit Impedanzen

Leiterplatten mit Impedanzen

Grafische Darstellung der Ziel-Impedanz. Auswertung erfolgt mit Polar Messgerät der neuesten Generation.
Polymere

Polymere

Polymere sind Makromoleküle, die wie Ketten aus Wiederholungseinheiten - den Monomeren - zusammengesetzt sind. Dabei bestehen sie meist aus einem Gemisch unterschiedlicher Kettenlänge. Sie sind im Pflanzen- und im Tierreich von jeher allgegenwärtig in Form von Biopolymeren, wie Polypeptiden/Eiweiß, Stärke/Mais oder Cellulose/Holz. Seit etwa einem Jahrhundert kann man Polymere auch im Labor synthetisieren. Inzwischen spielen die industriell erzeugten Produkte (oft Kunststoffe genannt) - in Form von Kleidung, Verpackungsmaterialien, Autoreifen, Kosmetika und Lebensmitteln - eine so wichtige Rolle, dass sie aus dem modernen Leben nicht mehr wegzudenken sind. Sowohl Biopolymere und deren Derivate als auch spezielle synthetische Polymere erfüllen zunehmend anspruchsvolle Sonderaufgaben in Medizin, Kosmetik und Technik. Bei diesen maßgeschneiderten Einsätzen stört oft die Tatsache, dass die Polymeren auch bei gleicher chemischer Zusammensetzung meist Moleküle sehr unterschiedlicher Molmasse enthalten. Für linear gebaute Produkte bedeutet dies, dass sie eine breite Längenverteilung besitzen. Diese Besonderheit kann sowohl im Falle ihrer Verwendung als Pharmazeutika als auch bei ihrem industriellen Einsatz Probleme verursachen. Um besonderen Anforderungen zu genügen, ist daher eine Entfernung von synthesebedingten unvermeidbaren, störenden Bestandteilen notwendig. Diese Abtrennung zu kurzer oder zu langer Ketten nennt man Polymerfraktionierung. Im Gegensatz zu niedermolekularen Substanzen, die nur aus einer einzigen Art von Molekül bestehen, setzen sich Polymere aus einem Gemisch aus Molekülen mit unterschiedlichen Molekulargewichten zusammen. Daher werden Molekulargewichte von Polymeren immer als Mittelwert angegeben. Dabei gibt es verschiedene Arten der Mittelwertbildung, die sich in der Art der Wichtung unterscheiden. Die gängigsten Mittelwerte sind das zahlenmittlere Molekulargewicht Mn das gewichtsmittlere Molekulargewicht Mw und das zentrifugenmittlere Molekulargewicht Mz: wobei ni die Anzahl der Moleküle mit dem Molekulargewicht Mi bedeutet. Die verschiedenen Mittelwerte können mit unterschiedlichen analytischen Methoden bestimmt werden (Mn mittels Osmose, Mw mittels Lichtstreuung und Mz mit der Ultrazentrifuge). Die leistungsstärksten Methoden zur Bestimmung der Molekulargewichte sind die Gel-Permeations Chromatographie (GPC, auch Größenausschlusschromatographie genannt) und MALDI-TOF (matrix assisted laser deionization/ionization - time of flight mass spectroscopy) da sie die gesamte Molekulargewichtsverteilung und damit auch die sogenannte Polydispersität D bestimmen können. Die Polydispersität ist ein Maß für die Breite einer Molekulargewichtsverteilung. Für Polymere, die nur aus Molekülen einer einzigen Kettenlänge bestehen (z.B. Proteine), ist die Polydispersität gleich eins. Je unterschiedlicher die Kettenlängen in einem Polymer sind, desto größer wird D. Durch das Entfernen von kurzen und/oder langen Ketten - wie es bei der Fraktionierung getan wird - kann die Polydispersität einer Polymeren verringert werden. Dabei versagen normalerweise die für niedermolekulare Substanzen gängigen Methoden wie Destillation (da Polymere nicht flüchtig sind) oder fraktioniertes Auskristallisieren (da die meisten Polymere nicht kristallisieren). Eine Abtrennung muss daher im gelösten Zustand erfolgen. Eine Möglichkeit bietet dabei die oben erwähnte GPC. Allerdings wird diese Methode überwiegend für analytische Maßstäbe verwendet und ist für die Produktion größer Probenmengen ungeeignet. Für die Gewinnung grö
Permanentmagnete

Permanentmagnete

Permanentmagnete können in verschiedenen Formen und Größen hergestellt werden. Sie werden häufig in Industrie- und Handelsanwendungen eingesetzt, zum Beispiel in Elektromotoren, Lautsprechern, Sensoren oder Generatoren. Permanentmagnete haben den Vorteil, dass sie keine externe Energiequelle benötigen und ihre magnetischen Eigenschaften über einen langen Zeitraum hinweg beibehalten können.
Verformungslager VG1

Verformungslager VG1

PGslide® Verformungs- Gleitlager, geführt Verformungslager VG1 PGslide® Verformungs- Gleitlager, geführt -abweichende Lasten und Abmessungen nach Kundenwunsch
Mikrobiologie

Mikrobiologie

Uricount Eintauchkultursystem zur orientierenden Keimzahlbestimmung und Diagnostik von Harnwegsinfektionen Originalpackung á 20 Röhrchen Artikel-Nr. 2230 KF GK T/HS Keimindikatoren für Flüssigkeiten Originalpackung á 20 Röhrchen Artikel-Nr. 2238 Mikruvid Zur Gesamtkeimzahlbestimmung und zur Bestimmung von Hefepilzen Originalpackung á 20 Röhrchen Artikel-Nr. 2239 Oxidase-Teststreifen Teststreifen zum Nachweis der Cytochromoxidase Originalpackung á 100 Teststreifen Artikel-Nr. 6221
Mikrobiologie

Mikrobiologie

Unser akkreditiertes Biologieprüflabor verfügt über moderne Lichtmikroskope und alle weiteren Geräte für eine optimale Probenvorbereitung und -präparation sowie Auswertung. Durch unser qualifiziertes und erfahrenes Fachpersonal können wir Ihnen auch die termingerechte Untersuchung größere Probenumfänge anbieten. Zu unseren gängigen Methoden gehören: Bestimmung der Gesamtsporenzahl je Kubikmeter Raumluft auf Holbachträgern Grundlage dieses Impaktionsverfahrens stellt die DIN ISO 16000-20:2015-11 dar. Es umfasst die Bestimmung und Zählung von Schimmelpilzsporentypen aus Raumluftmessungen. In Ergänzung zu Ihrem Prüfbericht erhalten Sie von uns eine Bewertungshilfe, die die Richtwerte nach dem „Leitfaden zur Vorbeugung, Erfassung und Sanierung von Schimmelbefall in Gebäuden“ (2017) zugrunde legt und für die hygienische Bewertung es Status Quo (Schimmelpilze) herangezogen werden kann. Blau gefärbter Holbachträger Probe einer Luftmessung mit Partikeln von Pilzsporen, Hautschuppen und Pollen Lebendkeimbestimmung von Luftmessungen je Kubikmeter, Auswertung von Agarplatten Bei diesem hauseigenen Verfahren erfolgt eine Bestimmung und Bewertung von Lebendkeimen auf festen Nährmedien (DG-18-, Malzextrakt- oder Dextrose-Agar), welche auf Grundlage der DIN ISO 16000-18:2012-01 durch Impaktion beprobt wurden. Die so gewonnenen Luftmessproben werden bei uns im Labor bebrütet, um die darauf vorhandenen Schimmelpilze kultivieren und im Anschluss bestimmen zu können. Grundlage dieses Verfahrens stellt die DIN ISO 16000-17:2010-06 dar. Bestimmt und gezählt werden die Schimmelpilztypen. Eine Bestimmung von Bakterien und Hefen erfolgt quantitativ, d.h. die Ereignisse (Kolonien) werden gezählt, jedoch nicht auf Art-/Gattungsebene genau bestimmt. In Ergänzung zu Ihrem Prüfbericht erhalten Sie auch hier von uns eine Bewertungshilfe, die die Richtwerte nach dem „Leitfaden zur Vorbeugung, Erfassung und Sanierung von Schimmelbefall in Gebäuden“ (2017) zugrunde legt. Luftkeimmessung-Platten mit Schimmelpilzen bewachsen Lichtmikroskopische Bestimmung von Schimmelpilzen, Hefen und Bakterien im Direktpräparat Bei diesem hauseigenen Verfahren werden Schimmelpilze direkt auf der Materialprobe bestimmt und gezählt. Untersucht werden ebene Materialstückproben, wie Tapete, Bodenbeläge, EPS und andere Schaumstoffe, Leichtbauplatten und Hölzer aber auch Mineralwollen und sonstiges Fasermaterial oder Partikelproben. Auch eingesandte Klebefilmproben untersuchen wir für Sie über dieses Verfahren. Vorteil der direktmikroskopischen Untersuchung ist, dass auch nicht kultivierbare Pilze nachgewiesen werden können. Vor allem bei Materialien, die sich schlecht homogenisieren und suspendieren lassen (Kunststoffe, Holz etc.) kann mit diesem Verfahren ein Pilznachweis erbracht und eine Unterscheidung zwischen Befall und Kontamination gemacht werden. Wenn eine Aussage zur Besiedlung auf Grundlage einer Klebefilmprobe ist nicht sicher möglich empfiehlt sich eine ergänzende Untersuchung mit anderen Methoden, wie „KbE/g“. Direktpräparate für die lichtmikroskopische Analyse Lichtmikroskopisches Bild von einem Direktpräparat. Erkennbar sind u.a. Sporen von Ochroconis sp., Sporen von Typ Aspergillus/Penicillium und geflechtartige Mycelfragmente Quantitative Bestimmung der koloniebildenden Einheiten (KbE/g) von Schimmelpilzen und Bakterien Bei diesem Verfahren erfolgt eine Bestimmung von
Integrale Fasern

Integrale Fasern

genannt, sind ein Meilenstein für eine umweltfreundliche und ressourcenschonende Bauweise. Zur Herstellung von integralen Fasern wird der Roving mit einer alkaliresistenten Beschichtung benetzt und auf eine gewünschte Länge geschnitten. Diese AR-Beschichtung verbessert auch das Verbundverhalten der Fasern zum Beton. Die Fasern gibt es je nach Anforderung in den Längen von 4 bis 60 mm und mit einer linearen Faserdichte von 100 bis 450 tex.
Katalysatoren und Katalysatorträger

Katalysatoren und Katalysatorträger

Sie ermöglichen viele chemische Reaktionen erst. Durch den Einsatz von Katalysatoren wird die nötige Aktivierungsenergie chemischer Reaktionen herabgesetzt und die Reaktionsgeschwindigkeit der Hin-und Rückreaktion gleichermaßen beschleunigt. Der Katalysator optimiert dabei den Reaktionsmechanismus und steht chemisch unverändert nach dem Prozess erneut zur Verfügung. Katalysatoren - Einsatz und Geschichte Die Standfestigkeit katalytischer Systeme wird dabei durch prozesstechnische Einflüsse bestimmt, so kann eine einmalige Bestückung bis hin zur periodischen Regenerierung erforderlich sein. Mit zunehmenden Einsätzen findet auch eine Alterung beziehungsweise Deaktivierung der Katalysatoren statt, was die Wirksamkeit beeinträchtigt. Unbewusst macht man sich den katalytischen Effekt schon seit der Antike zunutze, beispielsweise bei der Gärung von Alkohol. Erst 1835 wurde er aber in seiner Wirkungsweise erkannt, daraufhin erforscht und weiterentwickelt. Heutzutage sind Katalysatoren aus dem Alltag nicht mehr wegzudenken. Sie helfen, chemische Reaktionen wirtschaftlich zu machen oder überhaupt erst zu ermöglichen. Ungefähr 80% aller Erzeugnisse der Chemieindustrie benötigen Katalysatoren in ihrer Herstellung. Und auch für den Umweltschutz haben Katalysatoren eine immense Bedeutung in der Abgasbehandlung von Fabriken, Kraftwerken und Fahrzeugen. Anforderungen an moderne Katalysatoren Moderne Katalysatoren bestehen meist aus aktiven Komponenten und einem Katalysatorträger. Das Zusammenspiel dieser beiden Bestandteile bestimmt maßgeblich die Aktivität des Katalysators. Die Selektivität ist entscheidend, um bei der Reaktion Nebenprodukte und den Energiebedarf zu minimieren, was die Wirtschaftlichkeit erhöht. Sie muss immer auf die Zielreaktion eingestellt werden. Eine feindisperse Verteilung der aktiven Zentren sowie die Bereitstellung einer hohen Stoffaustauschfläche sind dabei nur zwei der vielen Anforderungen an die Herstellung von Katalysatoren. Bei IBU-tec unterstützen wir Sie mit langjähriger Erfahrung dabei, Material mit den Eigenschaften zu entwickeln und zu produzieren, die Sie benötigen. So erhalten Sie Katalysatoren und Katalysatorträger für die verschiedensten Anforderungsprofile, von hochspezifischen industriellen Anwendungen bis hin zur Abgaskatalyse. Für die Herstellung setzen wir unser breit gefächertes Anlagenportfolio Drehrohröfen Pulsationsreaktoren ein, die ein großes Potenzial für die Katalysatorproduktion bewiesen haben. Wenn Sie also Unterstützung für die Entwicklung von Katalysatoren brauchen oder Katalysatoren herstellen möchten, beraten wir Sie gerne.
Katalysatoren

Katalysatoren

Johnson Matthey zählt weltweit zu den Marktführern in der Entwicklung und Herstellung von Katalysatoren und katalytischen Systemen zur Emissionsminderung. Am Standort Redwitz werden seit über 30 Jahren schwerpunktmäßig Platten-Katalysatoren, Waben-Katalysatoren und Oxidationskatalysatoren vornehmlich zur Reduzierung von Stickoxid-Emissionen für Nutzfahrzeuge, Schiffsdiesel und Kraftwerke entwickelt, produziert und weltweit verkauft. Mehr dazu erfahren Sie unter http://ect.jmcatalysts.com (für mobile Anwendungen) und http://www.jmsec.com (für stationäre Anwendungen). Seit Anfang des 20. Jahrhunderts werden an den Standorten Emmerich und Oberhausen Katalysatoren gefertigt. Seit 2002 gehören beide Produktionsstätten zum Johnson Matthey Konzern. In Emmerich werden Katalysatoren für die Hydrierung von Fettsäuren hergestellt, die z.B. in Körperpflege- und Reinigungsmitteln zum Einsatz kommen. In Oberhausen werden in erster Linie Katalysatoren gefertigt, mit denen Oxo-Alkohole hergestellt werden. Mit Oxo-Alkoholen können PVC-Kunststoffe flexibler und dehnbarer gemacht werden.
Einsatzbereiche der Regranulate

Einsatzbereiche der Regranulate

PP Regranulat KFZ Bauteile Interieur /Exterieur Haushaltswaren Eimer und Wannen Blumentöpfe/-kästen Lager- und Transportkisten Werkzeugkisten Verpackungen non-food Abstandhalter und Profile Regenwassermanagement
Optische Fasern Index

Optische Fasern Index

Optische Faser Optische Fasern sind optische Übertragungssysteme mit Steckverbindern, die als konfektionierte Kabel oder medizinische Laser-Sonden zu einer flexiblen Übertragung von Licht, Signale oder Laserstrahl von der Quelle zum Ziel bzw. zur behandelnden Stelle dienen. Eine Optische Faser besteht aus einem Kern, einem optischen Mantel mit niedrigerem Brechungsindex (auch als „Cladding“ bezeichnet) und einem äußeren Mantel „Jacket“ oder auch „Coating“ genannt. Optische Fasern als Medizinische Lasersonde In der Medizin werden Optische Fasern für die Übertragung von Laserstrahlen (minimalinvasiv), an den erkrankten Stellen für verschiede Anwendungen zum (Schneiden, Koagulieren, Vaporisieren) eingesetzt
Lappenschließblech ZT S07

Lappenschließblech ZT S07

Lappenschließblech ZT S07 170x24x39 mm rund, DIN Ls silber lackiert 0010.000039 Artikelnummer: E9402068 Gewicht: 0.06 kg
Lappenschließblech ZT S07

Lappenschließblech ZT S07

Lappenschließblech ZT S07 170x24x39 mm rund, DIN Ls Niro 0010.000045 Artikelnummer: E490762 Gewicht: 0.06 kg
Lappenschließblech ZT S07

Lappenschließblech ZT S07

Lappenschließblech ZT S07 170x24x39 mm rund, DIN Rs silber lackiert 0010.000040 Artikelnummer: E9492069 Gewicht: 0.06 kg
Lappenschließblech ZT S07

Lappenschließblech ZT S07

Lappenschließblech ZT S07 170x24x39 mm rund, DIN Rs Niro 0010.000046 Artikelnummer: E400761 Gewicht: 0.06 kg
Lappenschließblech ZT S06

Lappenschließblech ZT S06

Lappenschließblech ZT S06 170x24x39 mm käntig, DIN Rs silber lackiert 0010.000026 Artikelnummer: E460468 Gewicht: 0.06 kg