Finden Sie schnell thermotransfer für Ihr Unternehmen: 72 Ergebnisse

Thermotransferdrucker Wraptor A6500

Thermotransferdrucker Wraptor A6500

Thermotransferdrucker Wraptor A6500, 300 dpi Leitungs- und Kabelkennzeichnung Artikel Nr. WRAPTORA6500EU Bezeichnung Thermotransferdrucker Wraptor A6500, 300 dpi Leitungs- und Kabelkennzeichnung Produktlink https://www.brady.de/de-de/149244/prod-breu_149244.html Hersteller Brady Ident 1 WRAPTOR-A6500-EU Ident 2 149244 Material --- Schutzart --- Zulassung --- Farbe Serie Wraptor A6500 EAN Code 75447359963 Preiseinheit je 1 Stück Verpackungseinheit 1 Stück
Wärmeträgeröl-Anlagen OTE-400-(72 bis 250)E-(130 bis 250)KU

Wärmeträgeröl-Anlagen OTE-400-(72 bis 250)E-(130 bis 250)KU

Medium: Wärmeträgeröl Heizleistung: 72/96/120/180/250kW Kühlleistung: 130/180/250kW Art: Temperiereinheit Standardausführung: bis 400°C
TTR-Folien

TTR-Folien

Unsere TTR-Folien (Thermotransfer-Folien) sind eine hervorragende Lösung für den Thermotransferdruck. Diese Folien ermöglichen es Ihnen, hochwertige Druckergebnisse auf einer Vielzahl von Substraten zu erzielen. Durch die Verwendung von TTR-Folien können Sie sicherstellen, dass Ihre Etiketten sowohl langlebig als auch widerstandsfähig sind. Wir bieten eine Vielzahl von TTR-Folien an, die auf die spezifischen Anforderungen Ihrer Branche zugeschnitten sind. Die Verwendung von TTR-Folien erhöht nicht nur die Druckqualität, sondern verbessert auch die Effizienz bei der Produktion von Etiketten. Lassen Sie uns gemeinsam eine Lösung finden, die Ihre Druckanforderungen erfüllt und die Effizienz erhöht.
FÜGETECHNIKPRÜFUNG

FÜGETECHNIKPRÜFUNG

Die Fügetechnikprüfung führen wir mittels der Computertomografie durch. Fehlerhafte Verbindungen beim Schweiβen, Löten, Nieten oder Kleben werden schnell erkennbar. FÜGETECHNIKPRÜFUNG Die Fügetechnikprüfung führen wir mittels der Computertomografie durch. Fehlerhafte Verbindungen beim Schweiβen, Löten, Nieten oder Kleben werden schnell erkennbar. Die Auswertung der Fügetechnikprüfung erfolgt in 2D-Röntgenbildern, Schnittfilmen oder 3D-Darstellungen.
Strömungssimulation: Fluid-Struktur-Interaktion (FSI)

Strömungssimulation: Fluid-Struktur-Interaktion (FSI)

Vollständig gekoppelte FSI-Simulation wird angewandt zur Simulation der Phasenverschiebung einer untersuchten Designvariante eines Coriolis-Massedurchflussmessers.
Festigkeitsnachweise

Festigkeitsnachweise

Wir führen normgerechte Nachweise für Ihre Konstruktion durch. Unsere Fachbereiche umfassen den Maschinenbau, Druckgeräte, den Apparate- und Anlagenbau, die Fahrzeugtechnik und die Medizintechnik.
Verbrennungssimulation

Verbrennungssimulation

Numerische Simulation des Explosionsvorganges in einem geschlossenen Rohr. Die Bilder zeigen das Fortschreiten der Verbrennung.
Wasserstrahlschneiden

Wasserstrahlschneiden

Vorteile - keine Verformung oder Verzug da Kalttrennverfahren - geringe Nachbearbeitung der Teile - geringer Materialabfall - schneiden komplexer Konturen - schneiden von fast allen Materialien möglich - auch bei großen Blechdicken kleine Löcher möglich - kein Aufhärten der Schnittkante - keine Verunreinigung der Luft - mehrlagiges Schneiden möglich - schneiden von Blechen, die eine gefräste bzw. geschliffene Oberfläche haben - schneiden mit zwei Schneidköpfen, bei entsprechenden Losgrößen Technik Mit der Wasserstrahltechnologie sind wir in der Lage die verschiedensten Materialien schnell, schonend, leistungsstark und umweltfreundlich mit einem Verfahrweg von 3000 x 6000 mm zu trennen. Der Wasserstrahl wird dabei mit ca. 4100 bar an der Düsenöffnung fokussiert. Um auch harte und dicke Werkstoffe schneiden zu können wird dem Wasserstrahl in einer Mischkammer im Schneidkopf ein Granulat, das sogenannte „Abrasiv“, beigegeben. Man unterscheidet zwischen Purwasserschneiden und Abrasivschneiden Purwasserschneiden Dieses Schneidverfahren trennt mit einem reinen Wasserstrahl das Werkstück. Dieses Verfahren wird vorzugsweise für relativ weiche Materialien angewendet wie Kautschuk, Schaumstoffe, Pappe, Gummi, Sperrholz, Textilien, Leder usw. Der Purwasserstrahl ist haarfein und hat eine Breite von nur ca. 0,1 – 0,2 mm. Dies ermöglicht sehr filigrane Konturen bei hoher Schnittgeschwindigkeit. Abrasivschneiden Um die Schneidleistung des Purwasserschneidens zu erhöhen wird dem Wasser das sogenannte Abrasiv beigemischt. Der Wasserstrahl beschleunigt dabei die Abrasivpartikel, welche dann das Material abtragen. Dadurch können auch harte und spröde Materialien wie Metall oder Stein leicht und schonend bearbeitet werden. Der Strahl hat einen Durchmesser von ca. 0,8 – 1,3 mm. Schnittqualitäten Die Schnittqualität beim Wasserstrahlschneiden ist sehr stark abhängig von der Schnittgeschwindigkeit, je langsamer man den Wasserstrahl durch das Werkstück führt, desto feiner wird die Schnittfläche. Beim Wasserstrahlschneiden unterscheiden wir drei verschiedene Schnittqualitäten. Feinschnitt gerade Schnittfläche; Schnittflächen sind fertige Funktionskanten ohne weitere Bearbeitung. Toleranzen +/- 0,1 mm Mittelfein leicht schräge Schnittfläche; wird bei fertigen Schnittoberflächen, Durchgangsbohrungen und Kernlöcher für Gewinde und Senkungen angewendet. Toleranzen +/- 0,15 m Trennschnitt schräge Schnittfläche und Riefenbildung; wird bei Schnittflächen angewendet, die noch bearbeitet werden. Toleranzen +/- 0,3 mm Diese Angaben sind nur Orientierungswerte, die je nach Materialart und Stärke variieren können. Je schneller geschnitten wird desto schmaler ist die Schnittfuge beim Austritt des Wasserstrahls an der Unterkannte des Materials. Die Schnittfuge am Eintritt ist meist 1 mm. Beim Feinschnitt ist die Schnittfuge ca. 0,8 mm breit am Austritt, beim mittelfeinen Schnitt ca. 0,5 mm breit und beim Trennschnitt ca. 0,3 mm breit. Schnittfuge Winkligkeit Wasserstrahlschneiden // Dreidimensional Wasserstrahlschneiden // MicroCutting Messing Bild vergrössern Aluminium Bild vergrössern Aluminium Bild vergrössern POM Dicke 50 mm Bild vergrössern
Berechnungen / Simulationen

Berechnungen / Simulationen

Fallen Fehler erst beim Aufbau von Mustern auf, sind bereits Zeit und Mittel verschwendet. Ganz zu schweigen von Ausfällen in der Serie oder in der späteren Anwendung! Daher ist eine ausführliche Tragfähigkeitsanalyse aller verwendeter Bauteile von äußerster Wichtigkeit. Mithilfe von FEM-Simulationen und analytischer Tragfähigkeitsberechnungen kann Tech Solutions solche Fehler noch während der Konstruktion entdecken und beheben.
Energiezentralen

Energiezentralen

Energiezentralen von INTEC liefern Prozessenergie für eine Vielzahl von Branchen unter Einsatz regenerativer Brennstoffe. Mehr und mehr zeichnet sich der Trend ab, Großkraftwerke durch dezentrale Kraftwerkslösungen zu ersetzen oder zu ergänzen. Bedingt durch den sichtbaren Klimawandel ist es existenziell, auf die bisherige Beheizung der Kraftwerke durch fossile Brennstoffe zu verzichten, und stattdessen regenerative Brennstoffe zu favorisieren. Für die Beheizung der Kraftwerke kann INTEC auf Rostfeuerungen als auch auf Wirbelschichtfeuerungen zurückgreifen. Die Entscheidung hierüber erfolgt in Abhängigkeit von den vorliegenden Brennstoffen. Durch die Heißgase aus der Verbrennung wird in einem Hochdruck-Wasserrohrkessel überhitzter Dampf erzeugt, welcher in einer nachgeschalteten Dampfturbine mit Generator Strom erzeugt. Die abgehitzten Abgase werden in einem speziell zugeschnittenen Reinigungssystem entsprechend der örtlichen Vorgaben von Schadstoffen befreit. Für die Beheizung der Energiezentralen kann INTEC auf bewährte Vorschubroste sowie auf Wirbelschichtfeuerungen unterschiedlicher Bauart zurückgreifen. Neben dem Einsatz regional vorhandener Biomassen als Brennstoff werden Produktionsabfälle verwendet, während auf fossile Brennstoffe weitestgehend verzichtet wird. Die erzeugten Heißgase aus der Verbrennung erhitzen ein Wärmeträgermedium wie Thermalöl oder Wasser. Diese Prozessenergie wird als Wärme für die Beheizung von z.B. Conti-Pressen, Taktpressen, Imprägnieranlagen, für Trocknungsprozesse wie auch zur Sattdampferzeugung genutzt. Die abgehitzten Abgase werden in speziell zugeschnittenen Reinigungssystemen entsprechend der örtlichen Vorgaben von Schadstoffen befreit, um die lokalen Umweltschutzbedingungen zu erfüllen. Durch den Einsatz regenerativer Brennstoffe und die Anwendung fortschrittlicher Verbrennungstechnologien tragen INTEC-Energiezentralen zur Verbesserung der Energieeffizienz und zur Reduktion von Treibhausgasen bei.
MONTAGEPRÜFUNG

MONTAGEPRÜFUNG

Zur Kontrolle von Montageergebnissen führen wir die Montageprüfung Ihrer Baugruppen mit der Computertomografie durch. So lässt sich beispielsweise herausfinden ob die Position einzelner Komponenten zueinander stimmt, ob Teile fehlerhaft montiert oder Dichtungen beschädigt wurden. Auch Fehlfunktionen oder Kollisionen, die beim Aufschneiden oder nach der Demontage nicht mehr erkennbar sind, werden sichtbar. Die Darstellung der Montageprüfung erfolgt mittels 2D-Röntgenbildern, 2D-Schnitten oder 3D-Darstellungen.
DEFEKTANALYSE

DEFEKTANALYSE

Im Rahmen der Defektanalyse prüfen wir Ihre Bauteile oder Baugruppen mittels Computertomographie zerstörungsfrei auf Defekte wie Risse, Brüche oder Dichteschwankungen. DEFEKTANALYSE Im Rahmen der Defektanalyse prüfen wir Ihre Bauteile oder Baugruppen mittels Computertomographie zerstörungsfrei auf Defekte wie Risse, Brüche oder Dichteschwankungen. Die Darstellung und Auswertung der Ergebnisse erfolgt durch 2D-Röntgenbilder, 2D-Schnittdarstellungen oder 3D-Visualisierungen, bei denen wir beliebige virtuelle 3D-Schnitte legen. Ebenfalls können wir durch die Defektanalyse die Folgen von Langzeiteinsätzen sowie die Abnutzung von Bauteilen untersuchen. Hierzu prüfen wir Ihre genutzten Bauteile zu einem Referenzmuster als IST-IST-Vergleich. Die Abweichungen werden als farbcodierte Abweichungsdarstellung visualisiert.