Finden Sie schnell sensoren für Ihr Unternehmen: 2419 Ergebnisse

Neigungssensor IN88 Modbus 2-dimensional

Neigungssensor IN88 Modbus 2-dimensional

Der Neigungssensor IN88 wird für die Erfassung des Neigungswinkels im Messbereich von ±85° eingesetzt. Durch die hohe Robustheit und Schutzart bis max. IP69k sowie den weiten Temperaturbereich von -40°C bis +85°C ist er beispielsweise für den Außeneinsatz in der mobilen Automation oder in Solaranlagen prädestiniert. Parametrierbare Filtereinstellung Robuste Bauweise Stapelbare Montage für Redundanz
UV-Sensoren / Sonden der Reihe SUV/SWV 32

UV-Sensoren / Sonden der Reihe SUV/SWV 32

Anlagensensoren der Reihe SUV / SWV 32 zeichnen sich durch Ihre vielseitigen Einsatzmöglichkeiten zur Überwachung von von UV-Bestrahlungsstärken aus. Der Sensor SUV 32 ist zur Überwachung der Bestrahlungsstärke von UV-Strahlungsquellen vorgesehen. Als UV -empfindliches Bauelement kommt eine SiC-Fotodiode zum Einsatz. Der Sensor ist mit G3/4“ Einschraubgewinde ausgestattet und in verschiedenen Ausführungen verfügbar. Sondenkörper: Edelstahl 1.4404 UV-Diode: UVD 370 Schutzgrad: IP 65
Induktive Wegsensoren und Messtaster, induktiver Sensor

Induktive Wegsensoren und Messtaster, induktiver Sensor

Die induktiven Sensoren der Serie induSENSOR werden zur Weg- und Positionsmessung eingesetzt und finden Anwendung in den Bereichen Automation, Qualitätssicherung, Prüffelder, Hydraulik, Pneumatikzylinder und Fahrzeugtechnik.
Magnetsensor MSK5000 linear

Magnetsensor MSK5000 linear

Magnetsensor MSK5000 - Kompaktsensor, inkremental, digitale Schnittstelle, Auflösung 1 µm Max. Auflösung 1 μm. Wiederholgenauigkeit ±0.01 mm. Status LED-Anzeige. Arbeitet mit Magnetband MB500/1. Leseabstand ≤2 mm. Artikelnummer: MSK5000 linear
spanfeste Induktivsensoren

spanfeste Induktivsensoren

Die Sensoren nutzen das patentierte Condet-Verfahren, um trotz Metallspänen im „Sichtfeld“ zuverlässige Ergebnisse zu liefern. Induktivsensoren trotzen Metallspänen Man stelle sich eine Produktionslinie vor, auf der Metallteile für die spanende Bearbeitung transportiert werden, zum Beispiel in der Automobilindustrie. Metallische Gegenstände, wie die zu bearbeitenden Trägermaterialien, sollen trotz störender Metallspäne automatisiert zuverlässig detektiert werden. Hier kann einem die Wahl des passenden Sensors schon Kopfzerbrechen bereiten: Optische Sensoren sind in diesem rauen Umfeld ungeeignet, weil zwangsläufig Schmutz, Öl und Späne die Sicht „vernebeln“. Ultraschallsensoren liefern nicht die benötigte Genauigkeit. Kapazitive Sensoren werden durch Späne gestört und bringen ebenfalls keine zuverlässigen Ergebnisse. Bleiben noch induktive Sensoren. Auch sie scheinen prinzipbedingt nicht ideal für diesen Einsatzzweck, sind aber dennoch die am weitesten verbreitete Lösung. Ein überarbeitetes Sensorkonzept macht nun induktive Sensoren resistent gegen nahezu alle Metallspäne und bringt im praktischen Einsatz weitere Vorteile. Typischerweise ist der Einsatz von induktiven Sensoren in der automatisierten, spanenden Fertigung nicht ohne Probleme. Bei der Fertigung entstehende Späne setzen sich auf den Sensoren ab. Je nach Sensortyp können sie diese „Verschmutzung“ bis zu einem gewissen Grad kompensieren, dann allerdings kommt es zu fehlerhaften, nicht mehr nutzbaren Signalen. Üblicherweise werden die Sensoren dann aufwändig gereinigt, die Produktion steht still. Zudem kann das beim Reinigen entstehende Schmutzwasser nicht einfach in die Kanalisation abgeführt werden, sondern muss zuvor kostenintensiv gesäubert werden. Anschließend arbeiten die Sensoren für eine Weile wieder zuverlässig, ehe der Reinigungsprozess von Neuem beginnt. Cleveres Messprinzip macht Sensoren spanfest Um hier eine zuverlässige, robuste und bezahlbare Alternative zu schaffen, hat Contrinex eine Serie spanfester Induktivsensoren entwickelt (Bild 1). Die Sensoren nutzen das patentierte Condet-Verfahren, um trotz Metallspänen im „Sichtfeld“ zuverlässige Ergebnisse zu liefern. Bei diesem Verfahren arbeiten Sensoren prinzipiell wie Transformatoren, folgen also in ihrem Verhalten dem Induktionsgesetz. Hinter der aktiven Fläche liegt eine Spule, die während eines Sendestromimpulses als Primärspule dient. Sie induziert im zu erfassenden leitfähigen Objekt eine Spannung, die dort einen Strom fließen lässt. Wird nun der Sendestrom abrupt ausgeschaltet, klingt der Strom auf der Sekundärseite ab und induziert seinerseits als „Primärspule“ eine Spannung zurück in die Sensorspule. Diese rückinduzierte Spannung bildet das Nutzsignal für die Objekterkennung. Mit diesem Verfahren lassen sich metallische Späne „ausfiltern.“ Zudem kann man damit die Sensoren komplett in Edelstahlgehäusen verbauen und große Schaltabstände erreichen. Beides erhöht die Sicherheit bzw. reduziert Sensorausfälle (Bild 2). Dank der transformatorischen Kopplung zwischen Objekt und Sendespule sind die Sensoren zudem temperaturunabhängig. In drei Bauvarianten vielseitig einsetzbar Die robusten, spanfesten Induktivsensoren werden in drei Bauformen angeboten: im M12-, M18- oder M30-Gehäuse jeweils für den nicht bündigen Einbau. Auch wenn Späne aus Eisen, Aluminium, Edelstahl, Messing, Kupfer oder Titan an ihnen haften, detektieren sie zuverlässig Gegenstände aus diesen Metallen. Die Sensoren im einteiligen Edelstahlgehäuse werden mit Schutzart IP68 und IP69K sowie einem weiten Temperaturbereich von -25 bis +85 °C angeboten, sind also bestens gewappnet für den Einsatz in den rauen Industrieumgebungen der spanenden Fertigung. Ihr Schaltabstand liegt je nach Typ bei 3, 5 oder 12 mm, die Wiederholgenauigkeit zwischen 0,2 und 0,8 mm. Die Sensoren arbeiten mit Frequenzen von 90, 200 oder 400 Hz. In der PNP-Version verfügen sie auch über eine I/O-Link-Schnittstelle für die Kommunikation mit dem Rest der Anlage, was sie beispielsweise für die Automobilindustrie unter anderem auch für die vorbeugende Instandhaltung äußerst interessant macht. Sie müssen nicht aufwändig für verschiedene Metalle kalibriert werden und sind dank Plug-and-Play-Installation schnell einsatzbereit. Typische Anwendungsbereiche finden sich im Maschinenbau bei automatisierten spanenden Fertigungsverfahren wie Drehen, Fräsen, Bohren oder Schleifen vorzugsweise in der Großserienfertigung. Denkbar ist ihr Einsatz aber auch in der additiven Fertigung. Hier stellen die Metallpulver und die damit einhergehenden Stäube hohe Anforderungen an die Sensoren. Im Metallrecycling können die Sensoren Anwesenheit oder Positionen verschiedener Klappen, Türen, Schubladen oder weitere metallische Gegenstände, die positioniert werden müssen, zuverlässig erkennen, ohne von kleinen metallischen Abfällen bei der Messung gestört zu werden. Überall dort wo Metallspäne unvermeidbar sind und dennoch metallische Objekte zuverlässig detektiert werden müssen, können die Sensoren also Ihre Vorteile ausspielen.
FT 55-RLAM - Laser-Distanzsensor für präzise Messaufgaben

FT 55-RLAM - Laser-Distanzsensor für präzise Messaufgaben

Kompakte Sensoren für präzise Messaufgaben und sichere Objekterkennung Der neue kompakte Abstandssensor von SensoPart ist ein echter Allrounder: Der FT 55-RLAM detektiert zuverlässig Oberflächen von schwarz bis glänzend. Mit einem Analogausgang, zwei Schaltausgängen, IO-Link- und optionaler RS485- Schnittstelle bietet der Triangulations-Sensor eine umfangreiche Konnektivität. Ungewöhnlich in dieser Leistungsklasse ist auch das innovative und anwenderfreundliche Bedienkonzept mit großem LCD-Display sowie Laserklasse 1. Highlights: - Stabile Prozesse dank exzellenter sensorischer Eigenschaften über den gesamten Arbeitsbereich -- Arbeitsbereiche bis 600 mm / 1000 mm -- Wiederholgenauigkeit ≤ 60 µm / ≤ 100 µm -- Linearität ≤ 0.6 mm / 1.5 mm -- Auflösung 30 µm / 50 µm an QA - IO-Link – zukunftsfähige Schnittstelle für die Anforderungen der Industrie 4.0 - Laserklasse 1 – für optimale Sicherheit - Einfache und damit schnelle Einstellung über das intuitive LCD-Display - Robustes Metallgehäuse – Langlebigkeit auch in fordernden Prozessen - Dicken- oder Paralleldifferenzmessung im Master-SlaveBetrieb Modell: FT 55-RL(2)AM Breite: 25 mm Höhe: 50,5 mm Tiefe: 50 mm Gehäusematerial: ZN-Druckguss, mattchrom Gehäuseschutzart: IP67; IP69; Prüfungen und Zulassungen: UL; ECOLAB; CE;
Sonderausführungen und Spezialanfertigungen von Lichtsensoren

Sonderausführungen und Spezialanfertigungen von Lichtsensoren

Anpassungen unserer Strahlungssensorprodukte an spezielle Einsatzbedingungen des Kunden sind für uns Normalität. D.h Ihre Individualität ist unser Tagesgeschäft. Gern ermitteln wir mit Ihnen im Dialog alle zu spezifizierenden Parameter und fertigen so projekttypisch Ihre Lichtsensoren auftragsgemäß an. Und dies nicht nur einmalig, sondern, sofern gewünscht, auch zukünftig auf Abruf. Nach Vereinbarung können wir Sie auch zu besonderen Beratungen vor Ort besuchen oder Ihre Technik in unserem Hause bearbeiten. Häufige Adaptionen nehmen wir unter anderem bei Spektralbereichen (besondere wellenlängenabhängige Kennlinien), Gehäusen, Messköpfen, Transmittern (z.B. vom eigentlichen Strahlungsdetektor abgesetzten Messverstärker) und integrierten oder externen Datenloggern vor. Spezialanschlusskabel (und Kabellängen) oder Steckverbindungen nach Ihrer Vorgabe können wir auf Anfrage liefern.
Temperatursensor Serie PYK

Temperatursensor Serie PYK

Platin-Temperatursensor ummantelt mit Polymerkeramik, fertig konfektioniert mit einer Standard-Anschlussleitung. Die Ummantelung sichert eine hohe mechanische Belastbarkeit, so dass der Sensor ohne weitere Schutzmaßnahmen verbaut werden kann. Die Polymerkeramik hat eine keramikähnliche thermische Leitfähigkeit und gewährleistet somit kurze Ansprechzeiten. Der Platin-Temperatursensor nutzt den Effekt der Temperaturabhängigkeit des elektrischen Widerstandes beim Edelmetall Platin. Der elektrische Widerstand nimmt dabei bei steigender Temperatur zu.
Niveau-Überwachungssonden CLS 20/25 nach Bahnnorm DIN EN 50155 Brandverhalten nach DIN EN 45545-2

Niveau-Überwachungssonden CLS 20/25 nach Bahnnorm DIN EN 50155 Brandverhalten nach DIN EN 45545-2

BEDIA Niveau-Überwachungssonden werden eingesetzt, um Füllstände von Flüssig­keiten auf Über- bzw. Unter­schreitung eines Grenz­wertes zu überwachen. Anwendungsbereiche und Vorteile: BEDIA Niveau-Überwachungssonden werden eingesetzt, um Füllstände von Flüssig­keiten auf Über- bzw. Unter­schreitung eines Grenz­wertes zu überwachen. Überwacht werden können wässrige Medien wie Kühl­mittel, AdBlue®, Frisch-, Schmutz­wasser und ölige Medien wie Motor­öle, Hydraulik­öle, Kraft­stoffe und Brems­flüssig­keiten. Durch die robuste Bau­form, hohe IP-Schutzart und einem Arbeits­temperatur­bereich von -40 °C bis +125 °C werden BEDIA Überwachungs­sonden über­wiegend in folgenden Be­reichen eingesetzt: Schienenfahrzeuge Motoren Hydraulikaggregate
Kabelfühler

Kabelfühler

Widerstandsthermometer und Thermoelemente mit Anschlusskabel aus Teflon, Silikon, u.a. mit oder ohne Befestigungsmittel Temperaturfühler mit Anschlusskabel als Widerstandsthermometer oder Thermoelement; mit Befestigungsarmaturen (Gewinde, verstellbaren Verschraubungen oder Spannband) oder zum Einstechen/ Stecken; Kabel mit freien Enden oder Stecker; mit oder ohne Knickschutzfeder; Standardausführungen oder Spezialanfertigung nach Kundenwunsch
Kabelfühler

Kabelfühler

Kabelwiderstandsthermometer vorwiegend im Einsatz für untere bis mittlere Temperaturbereiche. Vielfach eingesetzt für verschiedenste Anwendungen zur Temperaturmessung. Kabelwiderstandsthermometer basieren standardmäßig auf Pt100-Sensoren gemäß DIN EN 60751. Konfektioniert mit Schrumpfschlauch, Metall- oder Keramikhülse sind diese einfachen Temperatursensoren häufig eingesetzte Lösungen zur Bewältigung unterschiedlichster Temperaturmessaufgaben. Sie werden vorwiegend im unteren bis mittleren Temperaturbereich von -40°C ... 260°C eingesetzt. Auch Sonderausführungen mit einer Einsatztemperatur von bis zu 400°C sind Bestandteil des Portfolios. Andere Widerstandsnennwerte mit 500 Ω bzw. 1000 Ω oder andere Widerstandsmaterialien wie z.B. Nickel (Ni) oder Kupfer (Cu) sind optional erhältlich. Verwendung Die Sensoren werden überwiegend zur thermischen Überwachung der Wicklung elektrischer Maschinen verwendet. Sie eignen sich zudem zur Messung der Temperatur in Labor- und Versuchsanlagen, in gasförmigen, flüssigen oder festen Medien und werden auch in explosionsgefährdeten Bereichen eingesetzt. Feuchtigkeitsbeständige, IECEx und ATEX-zugelassene oder besonders hochspannungsfeste Sensoren mit einer Durchschlagfestigkeit bis zu 20 kV sind in verschiedenen, meist zugentlasteten Bauformen realisierbar. Kundenspezifische Abmessungen oder Zuleitungen sind möglich.
disynet stellt neue Hochtemperatur-IEPE-Sensoren mit hoher Empfindlichkeit vor

disynet stellt neue Hochtemperatur-IEPE-Sensoren mit hoher Empfindlichkeit vor

Mit der neuen Serie 3543Ax rundet Dytran seine bisherige Auswahl an triachsialen Hochtemperatur-IEPE-Beschleunigungssensoren mit Sensoren mit hohen Empfindlichkeiten von bis zu 100mV/g ab. Diese Beschleunigungssensoren zeichnen sich durch einen Temperaturbereich von -50°C bis +160°C aus. Sie verfügen über ein isoliertes, hermetisch dichtes Titan-Gehäuse mit einer Gewindebohrung für die Montage. Mit einem Gewicht von lediglich 15g sowie einer 15mm Kubus-Kantenlänge lassen sie sich zudem auch an schwer zugänglichen Stellen platzieren. Typische Anwendungsbereiche: Neben Lebensdauer- und Belastungsprüfungen (ESS, HALT/HASS) findet der 3543A Einsatz bei der Vibrationsmessung an heißen Stellen, wie beispielsweise am Motor oder an den Bremsen.
Drehmomentsensor DRVL

Drehmomentsensor DRVL

verschiedene Typen von 0,02 bis 20.000 Nm lieferbar Drehmomentsensor, Drehmomentaufnehmer, Drehmomentmesswelle aus unserem Standardprogramm sowie in kundenspezifischen Variationen mit Drehzahl- bzw. Drehwinkelmessung; 27 Messbereiche von ± 0 - 0,02 Nm bis 20.000 Nm; • Montagefreundliche Befestigung mit der Option "F" / Fuß • Montageadapter erhältlich! + erweiterte EMV-Festigkeit, + einstellbarer Ausgangspegel von Drehzahl- und Winkelsignal (5 V - 24 V), + Drehmomentaufnehmer zur Messung von Drehzahl und Drehwinkel ab 0,02 Nm, + erweiteter Drehzahlbereich für Drehzahl- und Winkelmessung, + Frequenzausgang für Drehmomentsignal 10 kHz ± 5 kHz (RS422), + großer Eingangsspannungsbereich (9 - 28,8 V), + optional 0,05 % Linearitätsfehler, Messbereich: 0,02 Nm - 20.000 Nm Genauigkeit: 0,1% bzw. 0,05% Option 1: Drehzalmessung Option 2: Drehwinkelmessung
Kraftsensor 410

Kraftsensor 410

0 ... 53 - 265 Centi-Newton Bei der Typenreihe 410 wird die Kraft mit der auf dem Biegebalken integrierten piezoresistiven Wheatstone-Brücke gemessen, deren Signal integriert verstärkt wird. Die angewandte Dickschicht-Technik gewährleistet eine hervorragende Stabilität und eine lange Lebensdauer. Das spezielle Design des Kraftsensors erlaubt Batchfertigung und ermöglicht durch vollautomatische Montage und Temperaturkompensation ein ideales Preis- / Leistungsverhältnis bei hohen Stückzahlen. Stückzahl und Losgrösse auf Anfrage Vorteile: + Kompakte Bauart für unterschiedlichste industrielle Applikationen + Ideal für OEM-Anwendungen in hohen Stückzahlen + Hohe Temperaturbeständigkeit + Kein mechanisches Altern + Kein mechanisches Kriechen Messbereich: 0 ... 53 - 265 Centi-Newton Ausgang: 0.3 ... 2.8 V Elektrischer Anschluss: Pin-Anschluss, RAST 2.5 Kompensation: Mit Temperaturkompension
Winkelsensoren, beruehrungslos RFD-4000

Winkelsensoren, beruehrungslos RFD-4000

Beruehrungsloser, kompakter und kostenguenstiger NOVOHALL Winkelsensor fuer kleine Einbauräume. Nachfolgeprodukt fuer Baureihe RFA4000. Besondere Merkmale • berührungslos, magnetisch • transmissiv messend • Messwinkel bis 360° • Linearität ±0,5 % • einfache Befestigung • seitlicher Magnetversatz bis zu ±1,5 mm • Schutzart IP67, IP68, IP69 • ein- und mehrkanalige Ausführungen • mechanisch unbegrenzte Lebensdauer • Auflösung 12 Bit • günstiges Preis-/Leistungsverhältnis • extrem flache Bauform Messbereich: 360° Technologie: Magnetisch Schnittstelle: Analog Genauigkeit bis zu: +/-0,5% Temperatur max.: +125°C Auflösung bis zu: 12 bit Schutzart: IP67 / IP69k Temperatur min.: -40°C
QAL 260 - MCERTs geprüfter Staubsensor

QAL 260 - MCERTs geprüfter Staubsensor

Hochwertige Emissionsmessungen für niedrige Staubkonzentrationen. MCERTs geprüfter Staubsensor mit Rückwärtsstreuung-Technologie für niedrige Staubkonzentrationen in Industrieprozessen. Vorteile: - Nachweisgrenze < 1 mg/m³ - Zertifiziert auf 15 mg/m³ - Manuelle und automatische Nullpunkt- und Messbereichsprüfungen - Automatische Funktionsprüfung - Spülluftüberwachung (optional) - Rauchgasblocker (optional) Messbare Parameter: Staub Technologie: ProScatter Rückwärtsstreuung Messbereich: <0 – 500 mg/m³ Möglicher Kanaldurchmesser: bis zu 10 m Rauchgastemperatur: bis zu 400 °C Taschenfilter: Ja Kartuschenfilter: Ja Zyklone: Ja Elektrofilter (ESP): Ja
Neigungssensor

Neigungssensor

Induktiv, magnetisch oder mit MEMS-Technologie, als Ein- oder Zweiachspendel mit analogem oder digitalem Ausgang. Die Größen der Neigungswinkel einer Plattform, wie sie z.B. in -Kranfahrzeugen und Großtransportern -Bagger- und Bohrgeräten -Schiffs- und Offshoreanlagen stellen wichtige Messdaten im Sicherungs- und Kontrollsystem dieser Maschinenanlagen dar. Ausgemessen werden diese Winkel mit Zweiachspendeln. Einachspendel erfassen beispielsweise die -Winkelstellung eines Kranauslegers -Querneigung eines Fahrzeugs -Lage einer Arbeitsbühne, Wehrklappe oder ähnlicher Einrichtungen Diese Geber enthalten im robusten, spritzwasserdichten Alugehäuse in den Schutzarten IP 65 bis IP 68 z. B. ölgedämpfte Pendelsysteme, deren Pendelauslenkung je nach Anwendungsbereich und Winkelgröße entweder mit berührungslosen, induktiven, optoelektronischen oder magnetoresistiven Drehwinkelmessumformern erfasst wird. Für sicherheitsrelevante Messaufgaben empfehlen wir die Anwendung der pendellosen redundanten mikroelektromechanischen Neigungssysteme (MEMS). Das Ausgangssignal der Neigungswerte steht entweder analog in Form einer Strom- oder Spannungsänderung bzw. digital – auch mit Bus-Schnittstelle – zur Verfügung. Für die Anwendung als Neigungsschalter, z.B. auf Arbeitsbühnen, Krankfahrzeugen oder in Krängungsanlagen auf Frachtschiffen, sind Einachs- als auch Zweiachspendelgeber mit eingebautem Min-Max-Komparator ausführbar.
Digitaler Feuchte-/Temperatursensor HYT271-S

Digitaler Feuchte-/Temperatursensor HYT271-S

Präzision, Zuverlässigkeit und Langzeitstabilität zeichnen unsere digitalen Feuchte- und Temperatursensoren mit I²C-Interface aus. Der Feuchtesensor HYT271-S mit SIL-Anschlüssen auf Keramiksubstrat ist ein leistungsstarkes Allroundtalent. Mechanisch robust, chemisch beständig und betauungsresistent bietet dieser digitale Feuchtesensor bei nur 10,2 x 5,1 x 1,8 mm Größe das breiteste Anwendungsfenster und bei höchster Qualität ein optimales Preis-Leistungsverhältnis. Präzise kalibriert liefert der HYT 271 eine Genauigkeit von ±1,8 % RH sowie ±0,2 °C - ideal für anspruchsvolle Massen-Applikationen, industrielle Handmessgeräte, präzise Feuchte-Transmitter und PCLOG.
Sicherheitstechnik

Sicherheitstechnik

Mit Sicherheitstechnik von ifm, Wieland, Siemens, Eaton, SSP Safety System Products & Datalogic sorgen Sie für funktionale Sicherheit – Lagerhaltige Produkte werden binnen 24 Stunden versendet!
Crane CheckStar Multi Drehmomentsensor 1 / 2 / 5 / 10 / 20 / 25 / 50 / 75 / 100 / 180 / 250 / 500 / 750 / 1400 / 3000 / 5000 Nm

Crane CheckStar Multi Drehmomentsensor 1 / 2 / 5 / 10 / 20 / 25 / 50 / 75 / 100 / 180 / 250 / 500 / 750 / 1400 / 3000 / 5000 Nm

Kapazität 1 / 2 / 5 / 10 / 20 / 25 / 50 / 75 / 100 / 180 / 250 / 500 / 750 / 1400 / 3000 / 5000 Nm, Genauigkeit ± 0,25%, rechts/links, LED-Lichtring, optional Drehwinkelmessung mit 0,125° Auflösung. Der CheckStar Multi ist die jüngste Generation der marktführenden rotierenden Drehmomentsensoren von Crane Electronics. Er hebt erneut den Standard für dynamische Drehmoment- und Winkelmessungen aller Dreh- und Impulsschrauber, mit anerkannter Verlässlichkeit bei tausenden von Anwendungen weltweit. Falls Drehwinkel spezifiziert ist, bietet der optionale Winkelencoder eine Auflösung von eindrucksvollen 0.125° (720 PPR). Bei Verwendung mit Crane Datenerfassungs- und Messgeräten zeigt der gut sichtbare 360° Leuchtring den aktuellen Drehmomentstatus dreifarbig an, so dass der Benutzer auch ein visuelles Feedback erhält. CheckStars passen “in-line” zwischen Montagewerkzeug und Schraube und messen so das aktuelle Anzugsmoment (und den Drehwinkel) unter Produktionsbedingungen. Egal welche Vibrations- oder Stoßbelastung auftritt, das patentierte Kontaktsystem des CheckStar Multi sorgt stets für sichere Verbindung zwischen Auslesegerät und Dehnmessstreifen. Das bei zweitklassigen Systemen auftretende “Bürstenflattern” wird sicher unterbunden, was hochzuverlässige Messergebnisse gewährleistet. Die geringe Masseträgheit der CheckStars sichert exakte und wiederholbare Messungen von hochschnellen Sprüngen, wie beim Abschaltpunkt von Drehschraubern und Winkelschraubern oder beim Pulsieren von Impulsschraubern. Durch eingebaute Intelligenz wird der CheckStar Multi vom Crane Messgerät automatisch erkannt. Dadurch werden mögliche Setup-Fehler vermieden und die Rüstzeit verkürzt. Zur vollständigen Rückführbarkeit kann die Seriennummer des verwendeten Sensors bei den Messergebnissen protokolliert werden. Der CheckStar Multi kann auch eingesetzt werden, wo ein Anwender die umfassende Leistungsfähigkeit nutzen möchte, aber bereits ein Auslesegerät eines anderen Fabrikats besitzt. Drehmoment: bis 5000 Nm Typ: dynamisch
Drucksensor Nano

Drucksensor Nano

Druck- und Vakuumschalter mit Tastenfeld und Display im robusten Metallgehäuse - Digitales Display und Status-LED's - Kompakte Bauform - Menügeführt programmierbar - Metallgehäuse für raue Umgebungen Pneumatik-Berecih Auf Grund seiner Bauweise und Eigenschaften ist der NANO-02 optimal für viele Anwendungen im Pneumatik-Bereich. IO-Link Der NANO-02 verfügt über zwei Transistor-Schaltausgänge von denen einer optional als IO-Kommunikationsstelle genutzt werden kann. Die IO-Funktionalität trägt auch zur einfacheren Programmierbarkeit des Sensors bei.
Induktive Subminiatursensoren und Miniatursensoren ab Bauform Ø3 mm oder M4

Induktive Subminiatursensoren und Miniatursensoren ab Bauform Ø3 mm oder M4

Induktive Miniatursensoren gibt es in der Bauform Ø3 mm, M4, Ø4 mm, M5, Ø6,5mm, M8 mit Gehäuselängen ab 16 mm oder in rechteckiger Form mit 5 x 5 x 25 mm. Hochintegriert mit LED und Kurzschlußschutz! Induktive Sub-Miniatursensoren sind überall dort einsetzbar, wo beengte Platzverhältnisse vorhanden sind oder wo kleine Objekte, z.B. Zahnradflanken, abzutasten sind. Obwohl die Sensoren so klein sind, sind sie voll funktionsfähig. Sie haben einen großen Versorgungsspannungsbereich von 10...30V DC oder sogar 5...36V DC, eine LED Funktionsanzeige, eine PNP oder NPN Endstufe mit 100 mA Ausgangsstrom und sind Kurzschluß- und Verpolungssicher. Die Sensoren mit einer Abmessung von Ø6,5 mm sind mit rechtwinkligem Kabelabgang erhältlich. Es gibt sie mit Schaltfrequenzen zwischen 1 kHz und 5 kHz. Anwendungsgebiete sind Beispielsweise: - Drehzahlerfassung - Bewegungserkennung - Anwesenheitskontrolle in Robotergreifern - Positionserkennung - Teileerkennung - Erkennung von Schiebern in Werkzeugen Die Schlüter GmbH hat zahlreiche Varianten am Lager. Gerne beraten wir Sie bei der Anwendung.
Thermoelemente

Thermoelemente

Ein Thermoelement ist ein Bauteil aus zwei unterschiedlichen metallischen Leitern, die an einem Ende miteinander verbunden sind. Thermoelemente wandelt durch Thermoelektrizität Wärme in elektrische Energie um. Es ist ein Bauteil aus zwei unterschiedlichen metallischen Leitern, die an einem Ende miteinander verbundenen sind. Eine Temperaturdifferenz erzeugt einen Wärmefluss und eine Thermospannung. Temperaturmessung mit Thermoelementen: Die Temperaturmess-Einrichtung mit einem Thermoelement als Messwertgeber besteht in der Regel aus dem Thermoelement mit einer Messstelle, einer Verlängerungsleitung, einer Vergleichsstelle mit bekannter bzw. konstanter Temperatur und einem Spannungs-Messgerät. Gerne konstruieren wir für Sie eine Sonderlösung nach Ihren speziellen Vorgaben. Typen: Typ K, Typ L, Typ J, Typ S, Typ T Herstellung: in Deutschland
End-of-Line Prüfstand für Neigungssensoren und MEMS / Neigungssensorprüfstand

End-of-Line Prüfstand für Neigungssensoren und MEMS / Neigungssensorprüfstand

Wir entwickeln vollautomatische Testsysteme für Neigungssensoren und Inertialsensoren (MEMS). Mit diesen Systemen ist die kombinierte Temperatur- und Bewegungssimulation (Motion Simulation) möglich Mit Hilfe von mehrachsigen Neigungstischen (Rate Tables) können wir im End-of-Line Testbetrieb oder zu Entwicklungszwecken Prüflinge exakt positionieren und unter Temperaturen von bspw. -40°C und bis 100°C kalibrieren und testen. Merecs Engineering kann das Testystem zusätzlich an die IT-Infrastruktur uneres Kunden anbinden, Datenbanken aufsetzen und automatische Datenanalysen mittels Mircosoft PowerBI einrichten, sodass wichtige Kennzahlen wie First Pass Yield (FPY), Prozessfähigkeit, Systemverfügbarkeiten, Statistiken und Trends kontinuiuerlich aktualisiert auf online verfügbaren Dashboards dargestellt werden.
Gewindegehäuse Reedsensoren

Gewindegehäuse Reedsensoren

Ein Reedsensor enthält einen Reedschalter, der in einem Metall- oder Kunststoffgehäuse fest vergossen wird; für besseren mechanischen Schutz und einfachere Montage. - Justierbarer Schaltpunkt - Ersetzt zahlreiche Wettbewerbstypen - Metall- und Kunststoffgehäuse M5 bis M12 - Netzspannungsvarianten, Öffner und Wechsler verfügbar - Verschiedene magnetische Empfindlichkeitsklassen
Optische Drehzahlsensoren

Optische Drehzahlsensoren

Drehzalsensoren für industrielle Anwendungen und Laboranwendungen geeignet für Festinstallationen und mobile Anwendungen mit Stroboskopen und Tachometern geeignet für saubere und raue Umgebungsbedingungen (viele Sensoren haben ein Edelstahlgehäuse) LED-Typen: universellen Anwendungen für saubere Umgebungen LED Hochtemperatur-Typen: Lüfterdrehzahlen für Automobile und schwere Nutzfahrzeuge Laser-Typen: Breites Anwendungsspektrum bei großer Entfernung zum Ziel. Infrarot-Typen: Dental- und andere Hochgeschwindigkeitsbohrer, Nuten oder Verzahnungen Magnet-Typen: An Eisenmetallen, vor allem an Verzahnungen Induktiv-Typen: An Zündspulen oder für industrielle Anwendungen
Messfühler MF-CO 300

Messfühler MF-CO 300

Die Messfühler vom Typ MF-CO werden zur Messung von toxischem Kohlenmonoxid in Tiefgaragen, Parkhäusern, Ladehallen eingesetzt. Messgas: Kohlenmonoxid Signalübertragung: analoges Messsignal, 4-20mA Anschlusstechnik: 24V DC (+), 4-20mA (GND) Kalibrierung: alle Bedienelemente am Fühler, manuelle Einstellung von Nullpunkt und Verstärkung direkt am Fühler möglich, mikroprozessorgesteuerter Fühlerabgleich Signalgenerierung: über elektrochemische Messzelle
µGT i1x / i2x / i3x - Beschleunigungssensor

µGT i1x / i2x / i3x - Beschleunigungssensor

Extrem rauscharmer mono-/bi-/triaxialer Beschleunigungssensor Hervorragendes Verhältnis von Empfindlichkeit zu Masse Interner Temperatursensor Stabilisierter IEPE-Spannungsausgang Robustes Aluminiumgehäuse Typische Anwendungen: Schwingungsüberwachung in Strukturen Beobachtung von Anomalien und Belastungsmessung von hochbeanspruchten Materialien Überwachung von Anlagen, z. B. Windkraftanlagen Quick Facts Frequenzbereich: min. 0,08 Hz bis max. 400 Hz Empfindlichkeit: 930 mV/g Wide Band Noise 0.1 … 400 Hz (RMS): < 2.5 μg Messgenauigkeit: +/- 2 % Betriebstemperatur: -40 °C bis +85 °C Schutzklasse: IP67 Abmessungen mono-/biaxial: 77 x 51 x 31 mm Abmessungen triaxial: 127 x 50 x 31 mm
Thermische Strömungssensoren TA

Thermische Strömungssensoren TA

Stationäre und mobile Verbrauchsmessung in Druckluft und Gasen, Laminarflow-Messung, Messung von Brennerzuluft und Leckageströmungen. Das Messprinzip beruht auf dem Wärmetransport von einem elektrisch erwärmten Körper in das umgebende Medium. Thermische Strömungssensoren messen primär die Normströmungsgeschwindigkeit Nv. Daraus lässt sich unabhängig von der Temperatur und vom Druck der Normvolumenstrom und Massestrom bestimmen. Thermische Strömungssensoren TA von Höntzsch sind in der Lage, sowohl kleinste als auch große Geschwindigkeiten von Gasen zu messen; sie erfüllen alle Anforderungen für den industriellen Einsatz: - geringe Abmessungen - robuste mechanische Ausführung - große Messspanne - langzeitstabile Messwerte - hohe Messgenauigkeit - chemische Aggressionsbeständigkeit Einsatzmöglichkeiten: Stationäre und mobile Verbrauchsmessung in Druckluft, Stickstoff, Erdgas, Argon, Helium, Methan, Wasserstoff, Kohlendioxid, SF6; langzeitstabile Messung kleiner Strömungsgeschwindigkeiten (Laminarflow), Messung von Brennerzuluft und Leckageströmungen; Überwachung von sicherheitstechnischen Einrichtungen, auch in der Luft- und Raumfahrt; Strömungsmessung in Fertigungsräumen der Pharma-, Nahrungsmittel- und Halbleiterindustrie sowie Flow-Überwachung in Handschuhboxen, Isolatoren oder Sinkgeschwindigkeitsmessung in Lackierkabinen. Die kalorimetrischen Durchflussmesser von Höntzsch sind auch für den Einsatz in Ex-Bereichen (ATEX, CSA) hervorragend geeignet. Messgeräteausstattung: Für die Messung erforderlich sind ein thermischer Strömungssensor TA und eine dazu passende Auswerteeinheit, die vielfach bereits im Sensor integriert ist. Strömungssensor TA10: zur Messung von Norm-Strömungsgeschwindigkeit, Norm-Volumenstrom und Mediumstemperatur (Sonde Durchmesser 10 mm mit Dünnschicht-Sensorelement) - Messbereich ab 0,2 m/s bis 200 m/s, hohe Messdynamik Nv (bis zu 1 : 1000) - Zeitkonstante ca. 1 s - Druckbeständigkeit bis 40 bar - Temperaturbeständigkeit -10 ... +140 °C - Ex-Ausführung: Kategorie 1/2G (Zone0/1) und 1/2D (Zone 20/21), CSA Class I Division 1 Groups A, B, C, D - Werkstoffe: Edelstahl, Epoxidharz, Glas Strömungssensor TA-Di: zur Messung von Norm-Strömungsgeschwindigkeit, Norm-Volumenstrom und Mediumtemperatur (Sonde Durchmesser 10 mm mit Dünnschicht-Sensorelement) - Messbereich ab 0,04 m³/h 1100 m³/h , hohe Messdynamik Nv (bis zu 1 : 1000) - Zeitkonstante ca. 1 s - Druckbeständigkeit bis 30 bar - Temperaturbeständigkeit -10 ... +140 °C - Ex-Ausführung: Kategorie 1/2G (Zone0/1) und 1/2D (Zone 20/21), CSA Class I Division 1 Groups A, B, C, D - Werkstoffe: Edelstahl, Epoxidharz, Glas Strömungssensor TA20: zur Messung von Normströmungsgeschwindigkeit, Normvolumenstrom und Mediumtemperatur (Sonde Durchmesser 20 mm mit Pt100-Sensorelementen) - Messbereich ab 0,08 m/s bis 60 m/s - Zeitkonstante ca. 10 s - Druckbeständigkeit bis 10 bar - Temperaturbeständigkeit -10 ... +240 °C - Werkstoffe: Edelstahl, Epoxidharz oder Glas - sterilisierbar
STROMSENSOREN

STROMSENSOREN

Stromsensoren sind elektrische Bauelemente, mit denen die Stromstärke in Kabeln und Stromschienen in der Regel galvanisch getrennt (berührungslos) anhand der durch elektrische Ströme ausgelösten magnetischen Flussdichte gemessen werden können. Es wird zwischen Sensoren, welche nur Wechselstrom erfassen können, und solchen, die Gleich- und Wechselströme erfassen können, unterschieden. Mit dem breiten Portfolio von Honeywell Stromsensoren bieten wir für fast jede Art von Strommessung den passenden Sensoren. Stromsensoren der Serie CSL open Loop Stromstärken: 57 bis 950 A CSLA1 / CSLA2 / CSLA3 / CSLAH3 / CSLT / CSLW Stromsensoren der Serie CSN closed loop Stromstärken: ±5 bis ±1200 A CSNB / CSNE / CSNF / CSNG / CSNH / CSNJ / CSNK / CSNL / CSNM / CSNP / CSNR / CSNS / CSNT / CSNX25 Stromsensoren der Serie CSD digital CSDA1 / CSDB1 / CSDC1 / CSDD1