Finden Sie schnell optische für Ihr Unternehmen: 93 Ergebnisse

telezentrische Objektive vicotar® BLUE Vision M42 Anschluss

telezentrische Objektive vicotar® BLUE Vision M42 Anschluss

Prädestiniert für den Einsatz mit High Tech-Kameras – vicotar® Telezentrische Objektive mit M42-Gewinde. Telezentrischen Objektive vicotar® mit M42-Gewinde. Damit profitieren auch Kameras im DX- und Kleinbildformat von den Vorteilen telezentrischer Objektive. Angeboten wird das M42 Gewinde für Objektive der BLUE Vision Serie und der Mikroskopobjektive. Objektive der BLUE Vision Serie zeichnen sich dadurch aus, dass ihre Farbkorrektur bis weit in den Blauen Spektralbereich erweitert wurde, erkennbar am Suffix „BW“ in der Typenbezeichnung. Sie erlauben mit blauem Licht monochromatische Bilduntersuchungen mit maximaler Schärfe bei größtmöglicher Tiefenschärfe. m Gegensatz zu den sonst üblichen C-Mount-Anschlüssen kommt es bei M42-Objektiven nicht zu Bildfeldabschattungen. Durch den großen Sensor sind zudem höhere Auflösungen darstellbar und die größeren Pixel erhöhen die Lichtempfindlichkeit. Im Gegenzug sinkt jedoch die Schärfentiefe. Die vicotar® M42-Objektive besitzen ein Auflagemaß von 46,45 Millimeter, die Gewindetiefe beträgt vier oder sechs Millimeter. Aktuell im Angebot auf unserer Website neun verschiedene Modelle, mit Objektfelddurchmessern von 4,5 bis 125 Millimetern sowie Arbeitsabständen zwischen 48 und 190 Millimeter. Für Kameras mit M58- oder M72-Gewindeanschluss hat Vision & Control auch entsprechende Adapter im Programm. Neben dem Schraubgewinde sind Kameras mit DX- oder Kleinbildsensor häufig auch mit einem in der Fotografie beliebten F-Mount-Anschluss versehen. Da dieser Bajonett-Verschluss aber nicht industrietauglich ist, fertigt Vision & Control Objektive für diese Sensorgrößen ausschließlich mit entsprechendem Gewindeanschluss. Sehen Sie unten aufgeführt M42-Objektive der BLUE-Vision-Familie. Fragen Sie uns gerne an. TO42/28.3-100-V-BW: M42-Anschluss TO66/28.5-120-V-BW: Festblende auf Anfrage TO88/28.4-130-V-BW: Farbkorrektur erweitert bis tief in den blauen Spektralbereich TO125/28.5-190-V-BW: farbkorrigiert für den sichtbaren Spektralbereich und nahes Infrarot
vicotar®  telezentrische Objektive TO18 und TO30 Serie

vicotar® telezentrische Objektive TO18 und TO30 Serie

Telezentrisches Messobjektiv mit objektseitig telezentrischem Strahlengang. Besonders farboptimiert für das blaue Spektrum, lichtstark, hochauflösend, geringer Farbquerfehler, robust Die neuen Objektiv-Serien „Blue Vision“ tragen der aktuellen Entwicklung im Bereich der LED-Technik Rechnung, bei der hocheffiziente blaue Leuchtdioden bzw. weiße Leuchtdioden mit starkem Blauanteil marktreif sind. Diese telezentrischen Messobjektive mit objektseitig telezentrischem Strahlengang, sind besonders hochauflösend, kompakt, leicht und robust. Eine spezielle Farbkorrektur im blauen Spektralbereich (450 bis 490 nm) liefert bei diesem energiereichen blauen Spektrum die maximale Schärfe bei größtmöglicher Schärfentiefe. Durch die spektrale Zusammensetzung weißer LEDs mit hohem Blauanteil zeigen sie auch hier noch hervorragende Abbildungseigenschaften. Die neuen Objektiv-Serien “Blue Vision” nutzen dabei den Umstand, dass die Intensität der Beugung von der Wellenlänge abhängt: Erzeugt ein konkretes Objektiv mit rotem Licht (650nm) z.B. ein Beugungsscheibchen von 8 µm Radius, dann ist es mit blauem Licht (450 nm) nur 5,5 µm groß, somit die Unschärfe um fast ein Drittel geringer. Arbeitsabstand: TO18/4.1-100-V-B Objektfelddiagonale: TO30/4.3-100-V-B
Bi-telezentrische Objektive vicotar® TOB11 - Serie

Bi-telezentrische Objektive vicotar® TOB11 - Serie

Telezentrische Objektive bilden Objekte ohne perspektivische Verzerrung ab. Der Abbildungsmaßstab bleibt mit Änderung des Arbeitsabstands (Objektweite) konstant. Auch für dreidimensionale Objekte. telezentrisches Messobjektiv mit objekt- und bildseitig telezentrischem Strahlengang hochauflösend, geringer Farbquerfehler, verzeichnungsarm, geringer Telezentriefehler farbkorrigiert für den sichtbaren Spektralbereich und nahes Infrarot Festblende robuste Industrie-Ausführung Sehen Sie unten aufgeführt alle Objektive der Serien TOB11 und TOB22. Fragen Sie uns gerne an. TOB11/11.0-80-V-WN: TOB11/11.0-70-V-WN TOB11/11.0-60-V-WN: TOB11/11.0-80-F6-WN TOB11/11.0-70-F6-WN: TOB11/11.0-60-F6-WN TOB11/11.0-80-F10-WN: TOB11/11.0-70-F10-WN TOB11/11.0-60-F10-WN: TOB22/11.0-120-V-WN TOB22/11.0-100-V-WN: TOB22/11.0-80-V-WN TOB22/11.0-60-V-WN: TOB22/11.0-50-V-WN TOB22/11.0-120-F6-WN: TOB22/11.0-100-F6-WN TOB22/11.0-80-F6-WN: TOB22/11.0-60-F6-WN TOB22/11.0-50-F6-WN: TOB22/11.0-120-F10-WN TOB22/11.0-100-F10-WN: TOB22/11.0-80-F10-WN TOB22/11.0-60-F10-WN: TOB22/11.0-50-F10-WN
vicotar® telezentrische Mikroskopobjektive TOM

vicotar® telezentrische Mikroskopobjektive TOM

TOM - Telezentrische Mikroskopobjektive für präzise Vermessungen kleiner Objekte. Der große Arbeitsabstand von bis zu 140 mm oder auch mehr und der maximale Kameraabstand von 400 mm bieten Flexibilität bei der Positionierung der Kamera und erlauben eine komfortable Arbeitsumgebung. Mit ihrer hochauflösenden, verzeichnungsarmen Optik und dem geringen Telezentriefehler ermöglichen die TOM-Objektive eine präzise Vermessung insbesondere von kleinen Objekten in einem breiten Spektrum von Anwendungen. Eine Vielzahl von Vergrößerungen (1x, 2x, 3x, 4x, 5x, 7,4x, 9,6x, 10x) bieten eine Vielzahl von Optionen, um unterschiedlichsten Anforderungen gerecht zu werden. Die TOM-Objektive wurden speziell entwickelt, um die Anforderungen der Industrie in Bezug auf präzise Messungen zu erfüllen. Mit einem nutzbaren Objektfeld bis zum Sensortyp 35 mm und DX ermöglichen die TOM-Objektive eine umfassende Erfassung von Details bei der Vermessung von kleinen Komponenten. Ein weiteres Highlight der TOM-Objektive ist die verstellbare und feste Blende, die es dem Anwender ermöglicht, die Belichtung an die spezifischen Anforderungen anzupassen. Durch den spektralen Bereich von monochromatischem Licht über das gesamte visuelle Spektrum bis hin zum nahen Infrarot bieten die Objektive eine breite Palette von Anwendungsmöglichkeiten, sowohl im sichtbaren Licht als auch in infrarotbasierten Anwendungen. Die TOM-Objektive sind mit den Objektivanschlüssen C-Mount und M42 kompatibel, was eine einfache Integration in bestehende Bildverarbeitungssysteme ermöglicht. Die farbkorrigierte Optik für den sichtbaren Spektralbereich und das nahe Infrarot gewährleistet präzise und genaue Messungen, unabhängig von der Anwendung. Darüber hinaus zeichnen sich die TOM-Objektive durch ihre robuste Industrie-Ausführung aus, die selbst in anspruchsvollen Umgebungen eine zuverlässige Leistung gewährleistet. Die hohe Qualität der verwendeten Materialien und die präzise Fertigung garantieren eine lange Lebensdauer und minimale Wartungsaufwände. Es ist wichtig anzumerken, dass die TOM-Objektive in Kombination mit einem Mikroskoptubus der MK190-Serie für C-Mount-Kameras verwendet werden können. Sehen Sie unten aufgeführt ausgewählte Beispiele aus unserem Portfolio Mikroskopobjektive, mit einigen Details, die jeweils für jedes Objektiv zutreffen. Fragen Sie uns gerne an. TOM4.3/21.6-64-F19-WN: großer Arbeitsabstand TOM21.6/21.6-70-F16-X-B-24V: präzise Messungen kleinster Objekte TOM7.2/21.6-74-F16-X-B-24V: verwendbar mit Mikroskoptubus MK190 TOM4.3/21.6-64-F19-X-B-24V: nutzbares Objektfeld bis zum Sensortyp 35 mm und DX TOM2.2/21.6-48-F25-X-B-24V: maximaler Kameraabstand 400 mm
telezentrische Objektive vicotar® BLUE Vision Serie TO42

telezentrische Objektive vicotar® BLUE Vision Serie TO42

Serie telezentrischer Objektive der BLUE-Vision-Familie mit 42 Millimeter Objektfelddurchmesser in robuster Industrieausführung. Wie bei allen Mitgliedern der BLUE-Vision-Familie umspannt die Farbkorrektur der TO42-Serie nicht nur den sichtbaren Spektralbereich bis zum nahen Infrarot. Sie wirkt auch tief in den blauen Spektralbereich hinein. Bei entsprechender Objektbeleuchtung mit blauen LEDs ist damit praktisch die doppelte Auflösung gegenüber konventionellen Abbildungen möglich. Da weiße Leuchtdioden einen hohen Anteil an blauem Licht besitzen sind die BLUE-Vision-Objektive auch für die Arbeit mit weißem Licht ausgezeichnet geeignet. Die vicotar® TO42-Serie besteht aus drei objektseitig telezentrischen Objektiven mit den Bildfelddiagonalen 16 Millimeter, 21,4 Millimeter und 23,3 Millimeter. Der Arbeitsabstand beträgt bei den kleineren Durchmessern 120 Millimeter, beim großen 100 Millimeter. Mit der variablen arretierbaren Blende können Auflösung und Schärfentiefe für jeden Anwendungsfall zwischen F/8 bis F/22 optimal eingestellt werden. Für den besonders rauen Einsatz gibt es die vicotar® BLUE-Vision-Objektive auch in einer rüttelfesten Variante mit fester Blende. Sehen Sie unten aufgeführt alle 3 Objektive der Serie TO42, mit einigen Details, die jeweils für jedes Objektiv zutreffen. Fragen Sie uns gerne an. TO42/21.4-120-V-BW: Farbkorrektur erweitert bis tief in den blauen Spektralbereich TO42/28.3-100-V-BW: hochauflösend, geringer Farbquerfehler, verzeichnungsarm, geringer Telezentriefehler TO42/16.4-232-V-M: robuste Industrie-Ausführung
Mikrokameras und Visionsysteme

Mikrokameras und Visionsysteme

Kameras und Inspektionssysteme - kleinste Abmessungen mit höchstmöglicher Bildqualität - Standardmodule und kundenspezifische Lösungen - integrierbar oder als stand-alone Systeme Optikron’s Mikro-Kameras und Visionsysteme sind optimal für Anwendungen, in denen es bei den bildgebenden Systemen darauf ankommt, dass kleinste Abmessungen mit höchstmöglicher Bildqualität kombiniert werden können. In diesen miniaturisierten Modulen werden kleinste Sensoren zusammen mit speziell hierfür optimierten Optiken verwendet. In der Produktline PRO CAMS sind in S-, M- und L-Serie insgesamt über 20 Standardmodule als Mikro-Kameras mit höchster Performance und Flexibilität verfügbar. Zusätzlich können diese PRO CAMS in Bezug auf Optiken, Gehäuse, Beleuchtung und Schnittstellen kundenspezifisch angepasst werden. So können diese optimal auf spezielle Anwendungen ausgelegt werden. Die PRO CAMS bilden auch die Basis für komplett kundenspezifische Lösungen. Die Produktline SMART CAMS ist auf höhere Kosteneffizienz und kurzfristigere Verfügbarkeit ausgerichtet. Dafür sind aktuell 3 ausgewählte Mikrokameras mit Konfigurationen verfügbar, die in ihrer funktionalen Auslegung einen breiten Bereich von Standardanwendungen erreichen.
AE 30: Optischer Inkremental-Encoder

AE 30: Optischer Inkremental-Encoder

Optisches Inkremental-Encoder-System, hohe Präzision, optische Abtastung, einfache Montage, gute Preis / Leistung, -40°C bis 100°C, Sicherheit durch IP 50 Außendurchmesser in mm: 31 Bohrung in mm: 2,0 - 8,0 Auflösung in cpr: 100 - 5000 Ausgangskanäle: 2 / 4 / 6 Spannungsversorgung V DC: 5
EBG 38: Optischer Inkremental-Encoder

EBG 38: Optischer Inkremental-Encoder

Optisches Inkremental-Encoder-System, hohe Präzision, optische Abtastung, einfache Montage, gute Preis / Leistung, -20°C bis 85°C, Sicherheit durch IP 50 Außendurchmesser in mm: 38 Welle in mm: 3,0 - 10,0 Auflösung in cpr: 250 - 4096 Ausgangskanäle: 3 / 6 Spannungsversorgung V DC: 5 / 8 - 30
ME 22 S: Optischer Inkremental-Encoder

ME 22 S: Optischer Inkremental-Encoder

Optisches Inkremental-Encoder-System, hohe Präzision, optische Abtastung, einfache Montage, Gute Preis /Leistung, -20°C bis 85°C, Sicherheit durch IP 50 Außendurchmesser in mm: 22 Welle in mm: 4,0 / 6,0 Auflösung in cpr: 1 - 360 Ausgangskanäle: 2 Spannungsversorgung V DC: 5
Großoptik

Großoptik

Qualitätskontrolle einer Großoptik Beispiele für Großoptiken LAYERTEC bietet Großoptiken an, die in verschiedenen Anwendungen in der Industrie (Materialbearbeitung, Messtechnik, Halbleiterindustrie, Displayproduktion), Wissenschaft, Medizin und anderen Bereichen eingesetzt werden. In Zusammenarbeit mit dem Kunden entwickelt LAYERTEC große optische Komponenten vom Prototypen bis zur Serienproduktion. Zur Sicherstellung der zugesicherten Spezifikationen greift LAYERTEC auf verschiedenste Fertigungstechnologien und Prüfmethoden zurück. Optische Komponenten Planoptiken Sphären Zylinder Asphären / Off-axis Parabeln Freiformoptiken Formgenauigkeiten und Oberflächengüte Ebenheiten bis zu λ/20 Poliergrad P4 Rauheit Rq ≤ 0,5 nm Oberflächendefekte bis 1 ppm bezogen auf die Prüffläche Technologien für Substratfertigung CNC-Schleiftechnik bis 2000 mm Politur (Klassisch und CNC) bis 2000 mm Interferometrie (Plan- und Zylinderflächen) bis 2000 mm Rauheitsmessung (taktil und optisch) bis 2000 mm Multisensor-Koordinatenmesstechnik bis 2000 mm Ultraschallreinigung bis zu 1200 mm Technologien für Beschichtung IAD bis zu 1200 mm Magnetronsputtern bis zu 600 mm Beschichtungscharakterisierung (einschließlich OPO-CRD, PCI, LIDT)
ME 22: Optischer Inkremental-Encoder

ME 22: Optischer Inkremental-Encoder

Optisches Inkremental-Encoder-System, hohe Präzision, optische Abtastung, einfache Montage, gute Preis / Leistung, -20°C bis 85°C, Sicherheit durch IP 50 Außendurchmesser in mm: 22 Bohrung in mm: 1,5 - 9,52 Auflösung in cpr: 1 - 360 Ausgangskanäle: 2 / 4 Spannungsversorgung V DC: 5
Fertigung optischer und nicht­optischer Kom­po­nen­ten aus Glas

Fertigung optischer und nicht­optischer Kom­po­nen­ten aus Glas

Mit dem von Docter Optics industrialisierten DOC3D®-Verfahren werden Asphären, Freiformlinsen, Arrays, Spiegel, Prismen und Lichttunnel aus Gob gefertigt- ohne dass es einer weiteren Nachbearbeitung durch Schleifen und Polieren bedarf. Die Einsatzgebiete reichen von optronischen Systemen über Anwendungen in Bereichen des General Lightings bis hin zu modernen LED-Straßen- und Architekturbeleuchtungen. DOCFast® Gepresste optische Komponenten aus Glas in Großserie Das DOCFast®-Verfahren von Docter Optics wurde entwickelt, um direkt aus der Glasschmelze optische Komponenten zu pressen.
Introduction to Femtosecond Laser Optics

Introduction to Femtosecond Laser Optics

Kurzpuls-Laser finden in zahlreichen Anwendungen Verwendung, wie beispielsweise in der zeitaufgelösten Spektroskopie, der präzisen Materialbearbeitung und der breitbandigen Telekommunikation. Getrieben von diesen Anwendungen zielen aktuelle Entwicklungen auf Laser ab, die eine höhere Ausgangsleistung und kürzere Pulse erzeugen können. Heutzutage wird die meiste Arbeit in der Kurzpuls-Physik mit Ti:Saphir-Lasern durchgeführt, aber auch Farbstofflaser und Festkörperlaser auf Basis anderer Übergangsmetalle oder seltenen Erden dotierter Kristalle wie Yb:KGW werden zur Erzeugung von Femtosekundenpulsen verwendet. Die reproduzierbare Erzeugung von Sub-100-fs-Pulsen hängt eng mit der Entwicklung von breitbandigen, verlustarmen dispersiven Verzögerungsleitungen zusammen, die aus Prismen- oder Gitterpaaren oder dispersiven Mehrschichtreflektoren bestehen. Die spektrale Bandbreite eines Pulses steht in Beziehung zur Pulsdauer nach einem bekannten Theorem der Fourier-Analyse. Zum Beispiel beträgt die Bandbreite (FWHM) eines 100-fs-Gauß-Pulses bei 800 nm 11 nm. Bei kürzeren Pulsen wird das Wellenspektrum signifikant breiter. Ein 10-fs-Puls hat eine Bandbreite von 107 nm. Wenn ein solcher breiter Puls durch ein optisches Medium propagiert, breiten sich die spektralen Komponenten dieses Pulses mit unterschiedlichen Geschwindigkeiten aus. Dispersive Medien wie Glas verursachen eine sogenannte "positive Chirp" auf den Puls, was bedeutet, dass die kurzwelligeren ("blauen") Komponenten im Vergleich zu den langwelligeren ("roten") Komponenten verzögert werden (siehe schematische Zeichnung in Abbildung 1). Eine ähnliche Verbreiterung kann beobachtet werden, wenn ein Puls von einem dielektrischen Spiegel reflektiert wird und die Bandbreite des Pulses größer oder gleich der Breite des Reflexionsbands des Spiegels ist. Auch breitbandige Spiegel, die aus einem Doppelschichtsystem bestehen, verursachen eine Pulsausbreitung, da die Laufzeiten der spektralen Komponenten des Pulses in diesen Beschichtungen extrem unterschiedlich sind. Im Sub-100-fs-Bereich ist es entscheidend, die Phaseneigenschaften jedes optischen Elements über die extrem breite Bandbreite des fs-Lasers zu kontrollieren. Dies gilt nicht nur für die Stretcher- und Compressor-Einheiten, sondern auch für die Hohlspiegel, Auskoppelspiegel und das Strahlpropagationssystem. Neben dem Leistungsspektrum, d.h. der Reflexion oder Transmission, müssen auch die Phasenbeziehungen zwischen den Fourier-Komponenten des Pulses erhalten bleiben, um eine Verbreiterung oder Verzerrung des Pulses zu vermeiden. Eine mathematische Analyse der Phasenverschiebung, die einem Puls beim Durchgang durch ein Medium oder bei der Reflektion an einem Spiegel zugefügt wird, zeigt, dass die Hauptphysikalischen Eigenschaften, die dieses Phänomen beschreiben, die Gruppendispersionsverzerrung (GDD) und die Verzerrungen dritter Ordnung (TOD) sind. Diese Eigenschaften werden als zweite bzw. dritte Ableitung der reflektierten Phase in Bezug auf die Frequenz definiert. Speziell entwickelte dielektrische Spiegel bieten die Möglichkeit, einem Puls eine "negative Chirp" aufzuerlegen. Auf diese Weise kann der positive Chirp, der sich aus Kristallen, Fenstern usw. ergibt, kompensiert werden. Die schematische Zeichnung in Abbildung 2 erklärt diesen Effekt anhand verschiedener optischer Pfadlängen von blauem, grünem und rotem Licht in einem solchen Spiegel mit negativer Dispersion. LAYERTEC bietet Femtosekunden-Laseroptiken mit unterschiedlichen Bandbreiten an. Dieser Katalog zeigt z.B. Optiken für den Well
ABG Head: Optisches Absolut-Lineargebersystem Singleturn

ABG Head: Optisches Absolut-Lineargebersystem Singleturn

Messlänge in mm: 800 Schrittweite in mm: bis 1 µm Auflösung: 18 Bit Ausgangssignale: SSI, BiSS, SPI Spannungsversorgung V DC: 5
MEHR 25 S: Optischer Inkremental-Encoder

MEHR 25 S: Optischer Inkremental-Encoder

Optisches Inkremental-Encoder-System, hohe Präzision, optische Abtastung, einfache Montage, gute Preis / Leistung, -20°C bis 85°C, Sicherheit durch IP 55 Außendurchmesser in mm: 25 Bohrung in mm: 4,0 - 6,0 Auflösung in cpr: bis 12000 Ausgangskanäle: 2 / 3 Spannungsversorgung V DC: 5
vicolux® Spotbeleuchtung SLB und SLE Serie

vicolux® Spotbeleuchtung SLB und SLE Serie

Spotbeleuchtung mit geringen Baumaßen, Fluter oder fokussiert Blitzbare High-Power-LED-Spotbeleuchtung mit abbildender Kondensoroptik Kompakte, thermisch optimierte Bauform Hohe Lichtleistung fokussiert auf kleinen Abstrahlwinkel Große Gleichmäßigkeit in der Lichtverteilung Die ausgeprägte Montagefläche ermöglicht eine optimale Wärmeableitung Robust, ohne bewegbare Einstellelemente Die hohe Lichtintensität sowie das optische Design ermöglichen den Einsatz auch bei variablem Arbeitsabstand Stromeinprägung: Dauerbetrieb und Highspeed-Blitzbetrieb mit 1µs Pulsdauer Sichere Arbeitsweise mit vicolux® digitalem Beleuchtungscontroller (z.B. DLC3005) Entwickelt für die Anforderungen der industriellen Bildverarbeitung Gehäuse: Aluminium, schwarz eloxiert. Wählen Sie aus 40 Spotbeleuchtungen die für Ihre Anwendung optimale Beleuchtung aus. Fragen Sie gerne an.
Mehrkamerasysteme vicosys® 6300 und 19001

Mehrkamerasysteme vicosys® 6300 und 19001

robuste embedded PCs Schnelle Bildverarbeitung mit Intel® Power bis zu 16 Kameras anschließbar Kompakt, lüfterlos und robust; Hutschienen- oder Wandmontage vicosys® 19001 und vicosys® 6300 - zwei neue leistungsstarke Mehrkamerasysteme für die industrielle Bildverarbeitung. Das flache High-End-Mehrkamerasystem vicosys® 19001 ist nur zwei HE hoch und für den Einbau in 19-Zoll-Racks konzipiert. Sein Acht-Kern-Prozessor (Intel Core i7-10700E) sorgt für maximale Geschwindigkeit im 2,8-GHz-Takt. Es können bis zu 16 Kameras angeschlossen werden. Zusätzlich sind Steckplätze für digitale Ein- und Ausgänge, Profinet- und weitere Kamerakarten vorhanden. Dank der direkten Feldbusanbindung integriert sich das System nahtlos in PROFINET-, ETHERCAT-, modbusTCP-, TELNET- und viele andere industrielle Netze. Maximale Geschwindigkeit im Schaltschrank bietet das Mehrkamerasystem vicosys® 6300 Kompakt. In ihm sorgt Intels Core-i3-9100TE-Prozessor für die schnelle Bildverarbeitung mit 3,20 GHz. Die Basisversion besitzt eine GigE-Vision-Kameraschnittstelle (ohne PoE) sowie einen Ethernet-LAN-Anschluss. Durch die direkte Feldbusanbindung lässt sich das System nahtlos in alle gängigen Industrie-Netzwerke einbinden. Sechs USB-3.1- sowie zwei USB-3.0-Buchsen sind ebenso vorhanden, wie zwei RS232-Schnittstellen. Optional kann das System um vier GigE-Vision-Anschlüsse (mit PoE) erweitert werden. Zusätzlich gibt es Erweiterungskarten für 16 digitale Ein- und Ausgänge mit PnP oder NPN sowie Profinet. Dank der webbasierten Benutzeroberfläche lassen sich alle Bildverarbeitungssysteme von Vision & Control per Webbrowser mit jedem PC oder Tablet intuitiv bedienen. Mit der eigens dafür entwickelten webHMI konfigurieren Sie für jeden Anwender individuell auf seine Bedürfnisse zugeschnittene Oberflächen, ganz ohne aufwändige Programmierung. Flexible Programmabläufe gestalten Sie mühelos mit der grafischen Entwicklungsumgebung. Auch kundeneigene Algorithmen lassen sich spielerisch in vicosys® integrieren. Das flexible Mehrkamerasystem unterstützt die Python-ähnliche Programmiersprache Ruby. Damit können Sie beispielsweise auch eigene Formeln verwenden, um Abstände in beliebige Ausgaben zu transformieren. Auf die mächtige Bildverarbeitungsbibliothek Halcon haben Sie Zugriff in einer prozessstabilen Linux-Umgebung. Die Vision-Systeme sind überall dort gefragt, wo es um große Flexibilität und robuste industrielle Schnittstellen geht und hohe Abarbeitungsgeschwindigkeiten bei gleichzeitigem Einsatz mehrerer Kameras verlangt werden. Fragen Sie uns gerne an.
Fibolux Broadband Source, NIR Testlichtquelle 1250-1650 nm

Fibolux Broadband Source, NIR Testlichtquelle 1250-1650 nm

Die Breitbandquelle kombiniert das Licht mehrerer SLD auf einen Single Mode Lichtwellenleiter. Zwei vergleichbare optische Ausgänge (1250-1650 nm) ermöglichen das parallele Arbeiten an 2 Messplätzen. In der Testlichtquelle wird das Licht von typisch 6 SLD (andere Versionen erhältlich) auf einen faseroptischen Ausgang kombiniert. Diese Superlumineszenzdioden (SLD) sind einzeln stabilisiert (Temperatur und Leistung), mit Lyot-Depolarisator depolarisiert und Isolatoren gegen Rückreflexion abgesichert. Das breit nutzbare Spektrum (1250-1650 nm) wird typisch in Verbindung mit dem Test optischer Komponenten in der Absorptionsspektrometrie (zusammen mit einem OSA zum Test von faseroptischen Komponenten und Kommunikationsstrecken), und der Kurzkohärenzinterferometrie (wie OCT) eingesetzt. Eine Besonderheit sind die beiden parallel an 2 Messplätzen nutzbaren optischen Ausgänge, welche mit Wechseladapter-Varianten ausgestattet sind (FC/PC, SC/PC und ST oder FCAPC, SC/APC). Die Grundvariante garantiert -35 dBm/nm innerhalb der spezifizierten 400 nm spektralen Breite (-30 dBm/nm innerhalb von 360 nm), eine 5 dB leistungsstärkere Option ist auf Anfrage erhältlich.
Telezentrische Beleuchtung TZB10-B450-P-SL

Telezentrische Beleuchtung TZB10-B450-P-SL

Telezentrische Beleuchtung, parallel gerichteter Strahlengang; Homogenes Leuchtfeld; blitzbar per Blitzcontroller blitzbare telezentrische LED-Beleuchtung - parallel gerichteter (kollimierter) Strahlengang zum Blitzen bei der Inspektion bewegter Objekte für die optische Messtechnik zur gezielten Hervorhebung von Kanten und Oberflächenstrukturen in Durch- und Auflicht; zur Detektion von Einschlüssen und Fehlstellen in transparenten Materialien wie in Edelsteinen ideal als Hintergrundbeleuchtung in Kombination mit telezentrischen Objektiven geringe Divergenz, hohe Lichtleistung Beleuchtungsparameter mit vicolux® smart light Beleuchtungscontroller einstellbar Anschluss: M8-Stecker am Gehäuse vielfältige Befestigungsmöglichkeiten und umfangreiches Zubehör Bestellnummer: 1-33-238
OREA 74: optisch-absoluter Singleturn-Drehgeber

OREA 74: optisch-absoluter Singleturn-Drehgeber

unempfindlich gegenüber magnetischen Fremdfeldern, höchste Auflösungen bis zu 20 Bit möglich, große durchgehende Hohlwelle, hohe Anbautoleranzen, lagerfreier Systemaufbau, umfangreiche Diagnosefunktionalität
Spezialglasfasern, kundenspezifisch

Spezialglasfasern, kundenspezifisch

Als zuverlässiger Faserlieferant entwickeln und fertigen wir die passende Spezialfaser für die Anwendung unserer Kunden. Heracle hat den Anspruch, OEM Kunden bei der Entwicklung neuer Produkte oder der nächsten Generation ihrer optischen und photonischen Gerätetechnologien als Faserpartner zu begleiten. Spezifisch auf Ihre Anforderungen zugeschnitten, entwickeln und fertigen wir die ideale Faser mit den richtigen Eigenschaften für den Einsatz in der gewünschten Anwendung. Nach erfolgreicher Entwicklung sorgen wir für eine zuverlässige und regelmäßige Belieferung während des Lebenszyklusses Ihres Produktes. Kernprofil: Stufenindex & Gradientenindex Wellenlängenbereich: UV; UV/VIS; VIS/IR Anzahl Claddings: bis zu 7 auf Anfrage verfügbare Coatings: Acrylate, Hochtemperatur-Akrylate, Silicon, Polyimid, Gold, Aluminium Numerische Apertur (Quarz-Quarz): von 0,08 bis 0,39 Numerische Apertur (Polymer-Quarz): bis 0,52
Mess- und Prüfdienstleistungen für Spezialglasfasern

Mess- und Prüfdienstleistungen für Spezialglasfasern

Messung und Test der mechanischen, optischen und geometrischen Eigenschaften von optischen Spezialglasfasern und Preformen Umfangreiche Messungen und Tests als Dienstleistung: • Messung spektrale Dämpfung von 190 nm bis 2100 nm • Measurement of geometry specifications: Core; Cladding; Coating, Buffer diameter • Measurement of eccentricity values (Core/Clad; Clad/Coating; Coating / Buffer) • Numerical Aperture o wavelength dependent; for single and multiple claddings • Fiber refractive index profile measurement • Fiber strength tests for fiber with glass diameter from 50 µm up to 1.5 mm o dynamic fatigue: up to 200kpsi proof tension o static fatigue: 2-Point-Bending and tensile method • FTIR spectrometry for fiber and cable coating materials analysis • Evaluation of interference pattern • Characterization of focal ratio degradation (FRD) • Fiber analysis by scanning electron microscope Messung von Preform Parametern zur Prozesskontrolle für nachfolgende Faserproduktion: • Preform measurement of Multimode and Singlemode waveguide structures • Geometry measurement for preforms from 10 up to 80mm glass diameter • Refractive index profile measurement for single and multiple cladding designs • Refractive index difference measurement from 0 to +/- xx
Spezialglasschmelzen

Spezialglasschmelzen

Wir bieten Ihnen mit unserem umfangreichen Know How der Glasherstellung Ihren individuellen Bedürfnissen angepasste Glasschmelzen an. VITRON – Ihr Spezialist für Spezialglasschmelzen Spezialglasschmelzen Kurzvorstellung Wir bieten Ihnen mit unserem umfangreichen Know How der Glasherstellung Ihren individuellen Bedürfnissen angepasste Glasschmelzen an. Wir beraten Sie hinsichtlich der Zusammensetzung der Gläser sowie der Schmelzbarkeit Ihrer eigenen Glaszusammensetzungen und fertigen für Sie Musterschmelzen in einer Größe von 250 ml Maßstab an. Zur Produktion stehen uns Platin- Induktions- Schmelzöfen und Silitstab- Schmelzöfen zur Verfügung. Wir fertigen für Sie Gläser angefangen von einigen kg bis ca. 5000 kg. Unser gegenwärtiges Fertigungsprogramm enthält zum Beispiel Gläser für die Dentaltechnik mit hohem F- Gehalt (Ionomergläser) Ionenaustauschgläser für GRIN-Linsen Hoch dotierte Seltene Erde Gläser (größer 50%) Gläser für anodisches Bonden bei Raumtemperatur Nutzen Sie unsere Jahrzehnte langen Erfahrungen in der Glasschmelztechnik zu Ihrem VORTEIL.
Metallbeschichtete Gradientenindexfaser

Metallbeschichtete Gradientenindexfaser

Multimode-Gradientenindexfasern mit Gold- oder Aluminiumbeschichtung Heracle bietet Gradientenindex-Multimodefasern für den Einsatz bei den Wellenlängen 850 und 1300 nm an. Durch die Metallbeschichtung kann die Faser unter harten Umgebungsbedingungen und hohen Umgebungstemperaturen eingesetzt werden. Stecker können direkt auf das Fasercoating aufgeschweisst werden und ermöglichen so hermetisch dichte Konfektionen. Kern/Mantel Durchmesser: 50/125 Numerische Apertur: 0,20 +/-- 0,015 Coating: Gold oder Aluminium
Metallbeschichtete Gradientenindexfaser

Metallbeschichtete Gradientenindexfaser

Multimode-Gradientenindexfasern mit Gold- oder Aluminiumbeschichtung Heracle bietet Gradientenindex-Multimodefasern für den Einsatz bei den Wellenlängen 850 und 1300 nm an. Durch die Metallbeschichtung kann die Faser unter harten Umgebungsbedingungen und hohen Umgebungstemperaturen eingesetzt werden. Stecker können direkt auf das Fasercoating aufgeschweisst werden und ermöglichen so hermetisch dichte Konfektionen. Kern/Mantel Durchmesser: 62.5/125 Numerische Apertur: 0,275 +/- 0,015 Coating: Gold oder Aluminium
Singlemodefaser mit Metallbeschichtung

Singlemodefaser mit Metallbeschichtung

heracle bietet Singlemode-Glasfasern mit Metallbeschichtung aus Aluminium oder Gold. Heracle fertigt Singlemode-Fasern mit Gold- oder Aluminiumbeschichtung für die Anwendung unter hohen Einsatzstemperaturen und rauhen Umgebungsbedingungen an. Die Faser entspricht der internationale Norm ITU-T G.652 mit Kern/Manteldurchmesser 09/125. Auf Kundenwunsch können andere Spezifikationen ebenfalls gefertigt werden (z.B. ITU-T G.657; abweichende Glasdurchmesser 09/80) . Spezifikation: ITU-T G.652 A Coating: Aluminium oder Gold
Spezialglasfasern ab Lager

Spezialglasfasern ab Lager

Heracle verfügt über ein breites Portfolio von Spezialfasern in Quarz-Quarz und Polymer-Clad Stufenindex oder Gradientenindex Varianten für Lieferung auf Bestellung oder Auftragsfertigung. Heracle verfügt über ein breites Portfolio von sofort verfügbaren und erprobten Spezialglasfasern. Bei uns finden Sie: - Multimode Fasern mit Stufen-Index oder Gradientenindex-Kernprofil - Quarz-Quarz-Fasern für Anwendungswellenlängen von ultraviolett bis infrarot. Hierzu gehören ebenfalls solarisationsfeste Fasern sowie Fasern für einen breitbandigen Einsatz. - Polymer-Clad-Fasern für Anwendung von UV bis IR Wellenlängen Um auch anspruchsvollste Bedingungen in der Industrie zu erfüllen, bieten wir strahlungsfeste Fasern, Solarisationsfeste Fasern, Fasern mit hoher Laserfestigkeit sowie metallbeschichtete Fasern für den Einsatz im Hochtemperaturbereich. Fasertyp: Multimode Kerndurchmesser [µm]: 50 - 1500 Anzahl Claddings: bis zu 7 (optional) Anwendungswellenlänge: UV; UV/VIS; VIS/IR Kernprofil: Stufenindex / Gradientenindex Coatings: Akrylat; Polyimid; Silicone, Metall
elunet GmbH: Glasfaser-Installationen/ Glasfaser-Spleißen/ OTDR Messung/ Inhaus-Datennetze/

elunet GmbH: Glasfaser-Installationen/ Glasfaser-Spleißen/ OTDR Messung/ Inhaus-Datennetze/

Strukturierte Verkabelung ist das Rückgrat jeder modernen IT-Infrastruktur. Sie bietet eine flexible und skalierbare Lösung, die es Unternehmen ermöglicht, ihre Netzwerke effizient zu verwalten und zu erweitern. Unsere Dienstleistungen umfassen die Installation von Kupferverkabelungen bis Kategorie 8 sowie Glasfaserverkabelungen nach OS2-, OM1- bis OM5-Standard, um sicherzustellen, dass Ihre Netzwerkverbindungen schnell und zuverlässig sind. Durch den Einsatz hochwertiger Materialien und modernster Techniken garantieren wir eine langlebige und leistungsfähige Verkabelungslösung. Unsere Experten sind darauf spezialisiert, Netzwerke zu entwerfen, die den spezifischen Anforderungen Ihres Unternehmens entsprechen und gleichzeitig zukünftige Erweiterungen berücksichtigen. Vertrauen Sie auf unsere Erfahrung, um eine stabile und effiziente Netzwerkumgebung zu schaffen. Wir sind Ihr Ansprechpartner für: Glasfaser-Installationen Netzwerktechnik Datenverbindungen Glasfaser-Spleißen Kupferverkabelung Netzwerkzertifizierung Multimode-Glasfaser Singlemode-Glasfaser EDV-Lösungen Netzwerkplanung Netzwerkberatung Inhaus-Datennetze LWL-Spleißen OTDR-Messungen Systemgarantie Netzwerkkomponenten Netzwerkmodernisierung Netzwerkservice Glasfasertechnik Netzwerkinstallation
Leistungen

Leistungen

Das Angebot an optischen und mechanischen Komponenten reicht vom Prototypen bis zur Serienfertigung. Montage, optische Komponente, mechanische Komponente, Produkte. Wir bieten Ihnen Lösungen für Optik und Mechanik von der Idee bis zur Serie.
Baugruppen und Systeme

Baugruppen und Systeme

optische und opto-machanische Baugruppen nach Kundenwunsch - gefasste Optiken in Halterungen - Mikrooptiken an Fasern - Funktionsgruppen und Subsysteme - Präzisionsmontage als Dienstleistung Als Systempartner fertigt Optikron OEM-Module und Baugruppen bis hin zu komplexen Funktionseinheiten und Systemen direkt nach Kundenvorgaben in der jeweils gewünschten Ausbaustufe. Als Partner für Entwicklung, Design und Optimierung von Komponenten, Baugruppen und Systemen beraten wir häufig schon in den Konstruktions- und Entwicklungsphasen, um effizient herstellbare und exakt montierbare Optiken und Mikrooptiken zu entwerfen. Wir bieten auch das Design und die Fertigung von speziellen Optikhalterungen an, mit denen wir dann Optiken und Mikrooptiken verbinden. So können wir diese als vorjustiertes Modul ausliefern, das für die Integration in ihr System optimiert ist. Für den Aufbau komplexer Systeme können wir auf ein breites Spektrum an Montage-, Füge- und Prüfmöglichkeiten zurückgreifen und stimmen Kriterien, Abläufe und den Einsatz spezieller Prüfaufbauten mit dem Kunden ab, um eine nach seinen Vorgaben optimale Funktion der Produkte zu erreichen. In-house Kompetenzen und verfügbare Prozesse - Kompetenzen und technologische Möglichkeiten: Optikdesign, Technologieentwicklung für Glasbearbeitung, komplette Prozesskette zur Bearbeitung von Planoptiken insbesondere Mikro-Planoptiken vom Rohglasblock bis zur fertigen Komponente, Schichtdesign, Entwicklung von Beschichtungsprozessen, Entwicklung und Ausführung von Montage- und Mikromontageprozessen, Mechanik- und Baugruppendesign, Kameraentwicklung und –integration, Prototypen und Hilfsmittelbau, Entwicklung und Umsetzung manueller, automatisierter und roboterunterstützter Prozesse - Technik und Prozesse: Sägen, Ausbohren, Planschleifen, Rundschleifen, Läppen, Polieren, Heißkitten, Feinkitten, Ansprengen, Beschichten (PIAD), Fräsen, Drehen, Lasergravieren, Messen, Montieren (manuell und roboterunterstützt), Systemmontagen