Finden Sie schnell spindel linearführung für Ihr Unternehmen: 255 Ergebnisse

Linearführung FDH

Linearführung FDH

- Kassette und Doppelschiene - Rollenschuhpaar und Einzelschienenpaar - Aluminium-Rollenführungen in hoch dynamischer Ausführung - eingelegte Laufbahnen aus Stahl - Laufrollem mit Schrägkugellagern für hohe Geschwindigkeiten - Schiebewiderstand individuell einstellbar - Vmax 10m/s, Beschleunigung 40 m/s2 - Wartungsfrei über die gesamte Lebensdauer
E – Lineareinheit/Linearachse mit Spindelantrieb

E – Lineareinheit/Linearachse mit Spindelantrieb

Lineareinheiten für leichte bis schwere Verstellaufgaben, Hand- oder motorische Verstellung möglich Die Rohrsystem Lineareinheiten E sind rationell, kostengünstig und universell einsetzbar. Gute Steifigkeit, geringe Durchbiegung, hohe Belastung, einfache Handhabung sind ideal in den Lineareinheiten vereinigt. Für die unterschiedlichen Einsatzfälle und Belastungen stehen je vier bzw. fünf Baugrößen zur Auswahl. Führungsrohrdurchmesser 18-80 mm. Lieferbar sind mehr als 50 Grundtypen in 160 Varianten. Merkmale: • „„Einheiten für leichte bis schwere Verstellaufgaben „„• Hand- und motorische Verstellung möglich „„• Baugrößen untereinander kombinierbar „„• Umfangreiches Zubehörprogramm Antriebsart: Spindelantrieb Baugröße: 18, 30, 40, 50 ,60 ,80 Hub max.: 2740 mm Traglast max.: 5650 N Moment max.: 170 Nm
Kompaktachse CA

Kompaktachse CA

Sind Positionierachsen für den Handlinggerätebau und können in fünf verschiedenen Größen und zwölf verschiedenen Führungstypen bzw. Führungsvarianten angeboten werden. Kompaktachse: CA-40
Linearführung EGTH / EGKH

Linearführung EGTH / EGKH

Mechanische Lineareinheit mit Gleitführungen und Antrieb über einen innenliegenden Trapez- oder Kugelgewindetrieb. Es wird eine teleskopische Bewegung erreicht.
Hubsäule, Teleskopsäule

Hubsäule, Teleskopsäule

Selbsttragende und höhenverstellbare Hubsäulen in einem kompakten, von Thomson voreingestellten Paket, ideal für medizinische und ergonomische Anwendungen, oder jede andere Teleskopbewegung. Die Thomson Hubsäulen bestechen durch einfache Montage, wartungsfreien Betrieb, hohe Momentlasten sowie ein gutes Verhältnis zwischen ein- und ausgefahrener Länge. Damit eignen sie sich hervorragend für medizinische und andere ergonomische Anwendungen. Ihre Vielseitigkeit, Flexibilität und Anpassbarkeit ermöglichen den Einsatz in einer Vielzahl an Anwendungen. Die Hubsäulen-Produktfamilie von Thomson umfasst zwei Modelle, die aus selbsttragenden, extrudierten Aluminiumprofilen gefertigt und schnell zu montieren sind und keine zusätzliche Schutzabdeckung erfordern. Die Auswahl des geeigneten Modells ist abhängig von den individuellen Anforderungen an Längenverhältnis im aus-/eingefahrenen Zustand, Lastkapazität, Geschwindigkeit und Kosten.
LINEAREINHEIT MIT KUGELLAGERUNG B=30, L=300, EDELSTAHL 1.4301, KOMP:STAHL

LINEAREINHEIT MIT KUGELLAGERUNG B=30, L=300, EDELSTAHL 1.4301, KOMP:STAHL

Werkstoff, Ausführung: Präzisionsrohr nach DIN EN 10305, Edelstahl 1.4301. Bei Typ E 18 Stahl verzinkt. Trapezgewindespindel Stahl, Rechtsgewinde, gerollt. Bestellbeispiel: K0495.300001X500 Hinweis: Mittlerer Drehzahlbereich, selbsthemmend. Auf Anfrage: Linksgewinde, Edelstahl-Ausführung, 2 Antriebszapfen, weitere Hübe oder Handräder. Zubehör: - Führungen K0496, K0497, K0498, K0499 - Klemmstücke des Rohrverbindungssystems Funktionsprinzip: Eine Rotationsbewegung der Gewindespindel wird in eine lineare Ausgangsbewegung des Führungsschlittens umgewandelt.
Kugelbüchsenführungen

Kugelbüchsenführungen

Die Kugelbüchsenführungen sind universal bewährt und finden sich im allgemeinen Maschinen-, Sondermaschinen- und Vorrichtungsbau.
LFS52-C-OL Laufrollentragschiene OL335

LFS52-C-OL Laufrollentragschiene OL335

Laufrollentragschiene OL335, Marke: INA Artikelnummer: LFS52-C-OL Länge: 0 mm Innendurchmesser: 0.001 mm Außendurchmesser: 0 mm
Bohren mit dem Elektronenstrahl

Bohren mit dem Elektronenstrahl

Der Bohr-Tiefeneffekt Durch die hohe Leistungsdichte im Fokus von 10 W/cm und mehr ist der Elektronenstrahl auch hervorragend zum Bohren geeignet. An der Auftreffstelle bildet sich eine Dampfkapillare im Material, die von einem schmelzflüssigen Mantel umgeben ist. Dies ist bereits das Basis-Loch. Backing-Material Das auf der Rückseite des zu bohrenden Werkstückes angebrachte Backing-Material wird, sobald das Werkstück durchdrungen ist, durch den Elektronenstrahl verdampft. Das entstehende Gasvolumen dehnt sich explosionsartig durch die Kapillare aus und schleudert das schmelzflüssige Material, das die Kapillare umgibt, heraus. „Fliegendes Bohren" Das fliegende Bohren wird von anderen Verfahren (Laserstrahl, EDM, ECM) nicht verwendet. Durch die Kombination von Strahlablenkung, Werkstückbewegung und einer für den Prozess optimierten Steuerung ist es möglich das Werkstück und den Strahl unabhängig voneinander zu bewegen. Der Strahl wird dabei während des Bohrvorgangs simultan mit dem Werkstückvorschub mitgeführt. Zwischen zwei Bohrvorgängen wird der Strahl ausgeschaltet, die nächste Position angesteuert und dann wieder eingeschaltet. Dieser Prozessablauf ermöglicht sehr hohe Bohrfrequenzen. Reproduzierbarkeit Der Elektronenstrahl wird nicht mechanisch, sondern nur durch elektromagnetische Linsen bewegt und fokussiert. Die Strahlparameter und Bohrparameter lassen sich speichern und der Bohrprozess ist so immer wieder reproduzierbar. Werkstoffe Fast alle metallischen Werkstoffe können, unabhängig von ihrer Härte, bearbeitet werden. Dies gilt auch für thermisch hochbelastbare Legierungen. Bohrlöcher Durch die Perforation mit dem Elektronenstrahl und die Verwendung von Backing-Material weisen die Bohrungen eine typische Form auf. Die Strahlaustrittseite ist scharfkantig und gratfrei. Auf der Eintrittsseite gibt es einen leicht konischen Einlauf. Beispiel EB-Bohren 1 Beispiel EB-Bohren 2 EB-Bohr-Prozess Aktuelle Seite:
Zahnriemenantriebe

Zahnriemenantriebe

Zahnriemenantriebe für maximale Distanz. Sie sind ideal zum Handhaben von leichten bis zu schweren Bauteilen über große Distanzen. IEF-Werner bietet Ihnen - von der einfachen, zum Anbau Ihrer eigenen Motoren vorbereiteten Lineareinheit bis hin zum mehrachsigen, komplett montierten Positioniersystem - das komplettes Produktprogramm für alle erdenklichen "Pick & Place" - Anwendungen. Weitere Vorteile: - umfangreiches Zubehör wie z.B. Motoren, Energieführungssystem, Kabelsatz, Verstärker und Steuerungem - flexibel kombinierbar - standardisierte Verbindungselemente - umfangreicher Beratungsservice mit Motorauslegung - kostenlose Bereitstellung von Zeichnungsdaten in 2D- und 3D
LEZ 1 (mit Zahnriemenantrieb)

LEZ 1 (mit Zahnriemenantrieb)

- Aluminium-Profil, mit Miniaturlinearführung LFS-8-5 - spielfreier Vorschub mit Zahnriemenantrieb - Wellenschlitten WS 3, L 176 x B 130 mm - in Längen bis 6000 mm lieferbar LEZ 1 (mit Zahnriemenantrieb) Merkmale: - Aluminium-Profil, Miniaturlinearführung LFS-8-2 - spielfreier Vorschub mit Zahnriemenantrieb - Zahnriemen mit 3 mm Teilung - Breite 9 mm - Vorschub pro Umdrehung: 60 mm - Wiederholgenauigkeit kleiner oder gleich ± 0,2 mm - Vorschub max. 1,5 m/s Optionen: - Sonderlängen im Raster von 100 mm auf Anfrage, max. 6000 mm - Befestigung über integrierte Gewindeschiene M6, Raster 50 mm Führungen und Wellenschlitten auch rostfrei lieferbar ! Antriebe / Schlitten Laufwagen: mit Wellenschlitten oder Laufwagen Preise: Auf Anfrage Längen in 100 mm Schritte: 296 bis 2996 mm
Wälzmutter

Wälzmutter

Uhing-Wälzmuttern sind Kraftschlußgetriebe, welche die Drehbewegung einer glatten Welle in eine Hubbewegung umwandeln. Die Wirkung der Wälzmutter wird durch wälzgelagerte Rollringe erzielt, die mit ihren speziell geformten Laufflächen gegen die Welle gedrückt werden und unter ihrem Steigungswinkel auf der Wellenoberfläche abwälzen.
Präzisions-Schlittenführung rollengelag.

Präzisions-Schlittenführung rollengelag.

Präzisions-Schlittenführungen rollengelagert. Werkstoff: GJL 250. Ausführung: geschliffen. Werkstoff: GJL 250. Ausführung: geschliffen. Hinweis: Als Option kann eine Klemmung angeboten werden, die an der Seitenkante ohne Belastung der Führungsgeometrie kraftschlüssig wirkt. F = Tragfähigkeit bei dynamischem oder statischem Lastfall. Die angegebenen zulässigen Belastungswerte (F) sind für eine Lebensdauer von 1 Million Hüben ausgelegt. Die Drehmomentwerte gelten nur bei mittig stehendem Schlitten. Auf Anfrage sind auch Kreuzschlitten lieferbar. Artikelnummer: 21034
Präzisionsspindeln CSAV

Präzisionsspindeln CSAV

mit Außenkegel mit Gewinde, verstärkte Ausführung (starr), für Riemenantrieb CHRIST Präzisionsspindeln garantieren durch die Verwendung besonderer Werkstoffe unter extremen Einsatzbedingungen, ein hohes Maß an Stabilität des Spindel-Systems. Die Einsatzbedingungen sind sehr universell und finden im gesamten Bereich der modernen Schleiftechnik ihren Einsatz. Rundlaufgenauigkeit 0,002mm
Spindelachsen

Spindelachsen

Colibri-L SE MTV Linearachse mit Kugelrollspindel und integrierter Kugelumlaufführung Die präzise und robuste Lösung Hub: 100- 1800 mm lieferbar mit oder ohne Motor max.Vorschubskraft bis 3695 N Wiederholgenauigkeit +- 0,03 mm Mit Colibri Antrieb: Bedienung über I/O oder BUS-Systeme Erhältlich in 3 Baugrößen L-SE MTV42 Hub[mm]: 100 - 1200 max. Last Fx [N]: 980 Spindelsteigung[mm]: 5 | 10 Baugröße [mm]: 42x45 L-SE MTV55 Hub[mm]: 100 - 1500 max. Last Fx [N]: 1620 Spindelsteigung[mm]: 5 | 10 | 16 Baugröße [mm]: 55x60 L-SE MTV80 Hub[mm]: 100 - 1800 max. Last Fx [N]: 3695 Spindelsteigung[mm]: 5 |10 | 20 Baugröße [mm]: 80x85
Hydrostatische Innenschleifspindeln

Hydrostatische Innenschleifspindeln

Verschleißfreie Lager, gleichbleibende Qualität bei hervorragendem Rundlauf, Dämpfung und geringe Vibrationen Vorteile auf einen Blick: - Verschleißfrei => unbegrenzte Lebensdauer => gleichbleibende Produktqualität - Keine Lagervibration => verbesserte Oberflächenqualität => nahezu geräuschloser Betrieb - Hervorragende Dämpfung => verbesserte Oberflächenqualität am Werkstück => längere Werkzeuge einsetzbar - Hohe Lastkapazität auch bei hohen Drehzahlen - Sehr hohe Steifigkeit durch Einsatz unserer PM-Regler - Betriebsbereites Set mit Hydroaggregat und Frequenzmrichter
Maschinenbaukomponenten

Maschinenbaukomponenten

Die Herstellung von Maschinenbaukomponenten ist eine der Kernkompetenzen der Mädel Metallverarbeitung GmbH. Wir bieten Ihnen maßgeschneiderte Lösungen für die Fertigung von Komponenten und Baugruppen, die in der Maschinenbauindustrie eingesetzt werden. Unser Leistungsspektrum umfasst die CNC-Bearbeitung, das Laserschneiden, die Blechbearbeitung und die Montage von Baugruppen. Mit modernster Technik und einem erfahrenen Team stellen wir sicher, dass Ihre Maschinenbaukomponenten höchsten Anforderungen an Präzision und Langlebigkeit gerecht werden. Ob Prototypen oder Serienproduktion – wir liefern Ihnen passgenaue Komponenten, die exakt auf Ihre Bedürfnisse abgestimmt sind.
Run-In Fertigungsprozess mit Funktionsüberwachung

Run-In Fertigungsprozess mit Funktionsüberwachung

Run-In Prozess ist ein Voralterungsprozess der produzierten Teile (100% Test). Ziel ist Frühausfälle im Feld zu vermeiden. Es wird die kritische Produktlebensphase in die Produktion verlagert. Run-In Komplettsysteme: Unser Know-How auf dem Gebiet der Funktions- und Dauerlaufprüfstände ermöglich die Entwicklung leistungsfähiger Run-In Systeme. Auch hoch dynamische Signalanalysen lassen sich durch unsere Systeme unter Dauerlaufbedingungen einsetzen und erlauben eine detaillierte Fehlerdiagnose. Dies ist auch an einer großen Anzahl von Prüflingen parallel möglich. Wir erstellen individuell Ihr kundenspezifisches System.
Lineal 'Flexi' aus Kunststoff

Lineal 'Flexi' aus Kunststoff

Lineal 'Flexi' aus Kunststoff, flexibel, Messbereich 0-30 cm Artikelnummer: 1429717 Druckbereich: 60 x 30 mm Druckfarben: max. 4 (Tampondruck) Maße: 4,0 x 31,0 x 0,1 cm Verpackungseinheit: 200 Zolltarifnummer: 90178010000
Kunststoff-Dreikantlineal

Kunststoff-Dreikantlineal

Preisgünstige weiße Kunststoff-Dreikantlineale in 15 + 30cm ohne Farbstreifen. 5 Wunsch-Skalierungen gemäß Tabelle auswählbar. Abmessungen: 326 x 25 x 25 Artikelverpackung: lose Druckgruppen: A Gewicht: 52 Länge: 30 Skalierung: cm Transportverpackung: 60cm x 40cm x 36cm Veredelungsmöglichkeiten: Tampondruck Werbefläche: 300mm x 6mm Zolltarifnummer: 90178010
Hirth-Stirnverzahnungen

Hirth-Stirnverzahnungen

Die Zähne der Hirth-Stirnverzahnung wird auf hochmodernen fünf Achsen Schleifzentren (Mägerle/Kehren) geschliffen. Konstruktionsbedingte Vorteile der Hirth-Stirnverzahnung: ◾selbstzentrierende und formschlüssige Verbindung ◾höchste Teilgenauigkeit und Wiederholgenauigkeit ◾hohe Plan- und Rundlaufgenauigkeit ◾Übertragung hoher Drehmomente bei kompakter Bauweise Dies erreicht Hagmann durch optimale Fertigungstechnik. Schleifen auf Kehren Ri 6-4 Y: + Mägerle MFP50 ◾mit hydrostatischem Rundtisch und AC-Synchron Direktantrieb ◾verzugsfreie Magnetspannung über Polschuhe ◾Schleifen in einer Aufspannung: Bohrung » Außendurchmesser » Plan » Hirthverzahnung ◾Messeinrichtung in der Maschine Hirth-Stirnverzahnungen sind neben Klingelnberg Zyklo-Palloid Spiralkegelrädern und Stirnrädern die dritte Produktlinie und werden bis 640 mm Ø realisiert. Die Produktvorteile der formschlüssigen Verbindung, höchster Teile,- Wiederhol-, Plan-, und Rundlauf-Genauigkeit, nebst Übertragung hoher Drehmomente, liegen auf der Hand.
Franz Kessler Motorspindeln H line

Franz Kessler Motorspindeln H line

KESSLER Motorspindel H line: Horizontale Einbaulage, sehr kurze Beschleunigungs- und Abbremszeiten Konfigurieren Sie Ihr Wunschmodell hinsichtlich Einbaulage, Motor, Drehzahl, Lagerung, Schmierung und Sensorik – je nachdem welche Lösung für Ihre Branche und Ihre Anwendung die richtige ist.
CNC | Fräsen, Drehen, Schleifen

CNC | Fräsen, Drehen, Schleifen

Fräsen von Glas und Keramik Beim Fräsen ist das zu bearbeitende Werkstück fest eingespannt und bewegt sich während des Arbeitsschrittes nicht. Nur das Werkzeug fährt die vorher programmierte Strecke rund um das Werkstück ab und gibt ihm damit die gewünschte Form. Mittels Fünf-Achsbearbeitung ist Schröder Spezialglas in der Lage, nahezu jede mögliche Form zu erstellen. Die Programme für diese hochmodernen Maschinen werden über geeignete Schnittstellen erstellt und übermittelt. CNC-Drehen von Glas und Keramik Anders als beim Fräsen von Glas ist beim Drehen das Werkzeug fest eingespannt und bewegt sich nicht. Nur das Werkstück rotiert um das Werkzeug. Auch beim diesem Arbeitsschritt können die Programme an einem externen PC erstellt und übermittelt werden. Kantenbearbeitung schleifen Mit dem Schleifen von Glas ist im Wesentlichen die Kantenbearbeitung gemeint. Dabei hat Schröder Spezialglas folgende Möglichkeiten: C-Schliff, Facettenschliff und das polieren von Kanten. Dies geschieht mittels einer Vacuumvorrichtung, um auch große Platten zu fixieren. Kleine Gläser, die einen Konturschliff benötigen, können auch im Paket gespannt und mittels Diamantwerkzeug bearbeitet werden. Hierbei können auch eckige Gläser bearbeitet werden..
Reverse engineering

Reverse engineering

Das digitalisierte Bauteil stellt für uns die Basis des Re-Engineerings dar. Aus diesen Daten wird ein fertigungsgerechter CAD-Datesatz konstruiert. VELA Performance bietet das komplette Reverse-Engineering aus einer Hand: hochpräzises 3D Scannen, CAD Konstruktion oder automatische Flächenrückführung, Verifikation und die Erstellung von Fertigungszeichnungen.
Rohrbearbeitung

Rohrbearbeitung

Unsere CNC-gesteuerte Drehachse ermöglicht die präzise Bearbeitung von Rohren, Profilen und anderen Hohlkörpern. Mit wahlweise Drei- oder Vier-Backen-Futter können wir beliebige Konturen in die Mantelfläche schneiden. Diese Technik ist ideal für komplexe oder vorgefertigte Teile im Einzel- oder Mehrfachnutzen.
Drehschwingungsanalysen

Drehschwingungsanalysen

TORSIONSCHWINGUNGEN, Drehschwingungen in Antriebs­systemen Drehschwingungen in Antriebs­systemen Antriebssystem einer Zementmühle mit Planetengetriebe / (c) Laschet Consulting Grundlagen Die von uns angebotenen Engineering-Arbeiten um­fas­sen vor­rangig die Be­rech­nungen und Simu­la­tionen von Torsions­schwin­gungen (Dreh­schwin­gungen) von gera­den, ver­zweig­ten und ver­masch­ten An­triebs­syste­men (An­triebs­strän­gen). Hier­bei wer­den auch nicht­lineare Eigen­schaf­ten (z.B. in elas­ti­schen Kupp­lungen, in Ge­trie­be­stufen mit Spiel, bei Schalt­vor­gän­gen) be­rück­sich­tigt. Es kön­nen so­wohl statio­näre als auch in­stationäre und tran­siente (zeit­ab­hängige) Vor­gänge in der Simu­lations­um­ge­bung ab­ge­bildet wer­den. Der Ein­fluss von rege­lungs­techni­schen Eigen­schaf­ten kann in ein er­wei­ter­tes Dreh­schwin­gungs­modell eben­falls ein­bezo­gen werden. Die CAE-­Unter­suchungs­ergeb­nisse beinhalten die Eigen­frequenzen (kritischen Dreh­zahlen) auch dar­ge­stellt in sog. Wasser­fall­diagram­men (Campbell-Diagrammen) so­wie die gra­fische Prä­sen­ta­tion und Inter­pre­tation der Eigen­for­men (Schwin­gungs­for­men). An­hand der Si­mu­la­tion er­folgt die Beur­tei­lung der tat­säch­lich zu erwar­ten­den Ampli­tuden (meist in Form von Dreh­momen­ten, Dreh­ge­schwin­dig­keiten, Beschleu­nigungen usw.) je nach Vor­gabe der An­regungen (d.h. Erreger­momente durch den Motor, den Arbeits­prozess bzw. durch die Arbeits­bedingungen). Vorgehensweise Eine typische Dreh­schwingungs­analyse wird in fol­gen­den Schritten durch­ge­führt: MODELLIERUNG Erstellung des Berechnungs­modells ge­mäß der Auf­gaben­stellung ANREGBARKEITS­ANALYSE Berech­nung und Inter­pretation des Eigen­verhal­tens inklu­sive der Dar­stellung von Reso­nan­zen in Campbell-Dia­gram­men in Ab­hängig­keit der An­re­gung, erste Modell­vali­die­rung SIMULATION Er­mitt­lung der System­ant­wor­ten wie z.B. Dreh­mo­men­te in Wel­len, Kupp­lun­gen, Getriebe­stufen usw. ent­we­der zeit- oder dreh­zahl­abhängig AUFBEREITUNG UND ANALYSE DER ERGEBNISSE Inter­preta­tion der Berech­nungs­ergebnisse im Ver­gleich zu Mes­sungen und Erfah­rungen, finale Modell­vali­die­rung und ggf. Modell­verfei­nerung OPTION: VARIANTENUNTERSUCHUNGEN, SYSTEMOPTIMIERUNGEN Festlegung einer technisch und wirtschaftlich sinnvollen “besten” Antriebskonfiguration
Gleitlager-Technik

Gleitlager-Technik

wahlweise als wartungsfreie und als wartungspflichtige Ausführung tragzahlstark betriebssicher langlebig als kompakte Kombinations- und kundenspezifische Sonderlösung mit weltweit gültiger Produkthaftpflichtversicherung
Funktion hydrodynamisches Radialkippsegmentlager

Funktion hydrodynamisches Radialkippsegmentlager

Die Funktion des hydrodynamischen Radialkippsegmentlagers basiert auf dem Zusammenspiel von der geometrischen Abhängigkeit zwischen Wellendurchmesser und dem Krümmungsradius der Radialkippsegmente, der Rotation der Welle und dem zugeführten Schmieröl. Bei dieser Funktionsweise entsteht ein Schmierspalt, der die Reibung zwischen der Welle und dem Lager verringert und gleichzeitig die entstehende Wärme ableitet. Die Radialkippsegmente, die in der Regel aus 4 oder 5 Stücken bestehen, werden in Umfangsrichtung in den Lagergrundkörper eingebracht und mithilfe von Halteschrauben positioniert. Konstruktiv ist zwischen den Segmenten ein Freiraum vorgesehen, der bei den meisten Radialkippsegmentlagern zur Zufuhr und Ableitung von Schmieröl dient.
ZENTRIERUNGEN FÜR RUHIGEN LAUF VON ANTRIEBSWELLEN

ZENTRIERUNGEN FÜR RUHIGEN LAUF VON ANTRIEBSWELLEN

SGF-Zentrierungen ermöglichen durch ihre hohe Fertigungsgenauigkeit einen herausragenden Rundlauf von Gelenkscheibenkupplungen und Antriebswellen, auch bei hohen Drehzahlen. Daraus resultiert hervorragendes Hochlaufverhalten mit bestmöglichem Unwuchtverhalten für den Antriebsstrang. Körperschallübertragungen werden hierbei durch den elastomergedämpften Aufbau der SGF-Zentrierung wirksam abgekoppelt.
Induktive Sensoren - Messprinzip und Aufbau

Induktive Sensoren - Messprinzip und Aufbau

Was sind induktive Sensoren? Kurz gefasst: Induktive Sensoren basieren auf elektromagnetischen Prinzipien, um die Anwesenheit von Metallobjekten zu erkennen. Sie bestehen aus einem Schwingkreis, der eine Hochfrequenz erzeugt. Wenn ein metallisches Objekt in die Nähe des Schwingkreises gebracht wird, wird die Schwingungsfrequenz gestört und der Sensor erkennt das Objekt. Berührungslose induktive Sensoren erzeugen um ihre Sensorfläche ein hochfrequentes elektromagnetisches Feld. Dieses Feld wird von metallischen Objekten beeinflusst und zwar in Abhängigkeit von der Objektgröße, dem Material und dem Abstand zum induktiven Distanzsensor. Der Sensor erfasst diese Änderung und wandelt sie in ein proportionales Ausgangssignal um. Diese Messung findet berührungslos und somit verschleißfrei statt. Im inneren eines induktiven Sensors erzeugt ein Oszillator ein elektromagnetisches Wechselfeld mit Hilfe eines Schwingkreises. Dieses Feld tritt an der aktiven Fläche des Sensors aus. Wenn sich ein metallisches Objekt der aktiven Fläche nähert, entziehen die, in dem Objekt induzierten, Wirbelströme dem Oszillator Energie. Hierdurch entsteht am Oszillatorausgang eine Pegeländerung, die in Abhängigkeit von der Distanz des Objektes das Ausgangssignal beeinflusst und eine induktive lineare Messung ermöglicht. Aufbau von Induktiven Sensoren Was sind die Eigenschaften von induktiven Sensoren? Induktive Sensoren verfügen über eine Reihe von Eigenschaften, die sie für verschiedene Anwendungen geeignet machen. Einige dieser Eigenschaften sind: Empfindlichkeit: Induktive Sensoren können sehr empfindlich sein und sogar kleine Metallteile erkennen.