Finden Sie schnell plasma beschichtung für Ihr Unternehmen: 44 Ergebnisse

Plasma arcojet® PG052P

Plasma arcojet® PG052P

Das Gerät Arcojet® PG 051P wird bei der Vorbehandlung von kleineren Kunststoffteilen, insbesondere Kunststoffprofilen in Extrusionslinien, Formteilen im Spritzguss, Bechern und Tuben vor dem Verkleben Arcojet® PG Das Gerät Arcojet® PG 051P wird bei der Vorbehandlung von kleineren Kunststoffteilen, insbesondere Kunststoffprofilen in Extrusionslinien, Formteilen im Spritzguss, Bechern und Tuben vor dem Verkleben und Bedrucken eingesetzt. Es können Behandlungsgeschwindigkeiten bis etwa 15 m/min abgedeckt werden. Der Arcojet verfügt über eine freistrahlende Elektrode, welche keine masseführende Gegenelektrode benötigt. Der Generator erzeugt eine Hochspannungsfunkenentladung, die mittels eines Luftstroms aus der Elektrode heraus auf die zu behandelnde Fläche übertragen wird. Mit dem so entstehenden Plasma werden Kunststoffoberflächen aktiviert, so dass sich Druckfarben, Lacke, Klebstoffe usw. darauf verankern können. Je nach Einbausituation sind unterschiedliche Kopfausführungen lieferbar
Beschichten (Plasma)

Beschichten (Plasma)

Aufbringen einer Schicht durch Niederschlag eines zuvor verdampften Materials auf ein Werkstück unter Plasmaeinwirkung.
Oberflächenbeschichtung

Oberflächenbeschichtung

Langjährige Partnerschaften mit führenden Unternehmen der Oberflächenvergütung Durch langjährige Partnerschaften mit führenden Unternehmen der Oberflächenvergütung bieten wir u. a. Oberflächenbeschichtungen wie Pulverbeschichten, Nasslackierung, Verzinken, Verchromen und KTL-Beschichten. Sehr Kurzfristig können wir Serien-, Einzel- und Sonderteile in den verschiedensten Qualitäten und Anforderungen liefern. Selbstverständlich sind auch galvanische Oberflächenbeschichtungen oder Phosphatierungen möglich. Über unser Know How hinaus bieten wir Ihnen Manpower und Logistik, wenn Sie Zusatz und Sonderarbeiten vor oder nach der Beschichtung benötigen.
Vakuumbeschichtung

Vakuumbeschichtung

Die Beschichtungen zeichnen sich durch folgende Merkmale aus:- Dicken von einigen Nanometern bis zu mehreren Mikrometern- Härten von 1000 bis 4000 HV.
Plasmareinigung / Tiefenreinigung = Plasmabehandlung

Plasmareinigung / Tiefenreinigung = Plasmabehandlung

LABS ist ein Akronym für Lackbenetzungsstörende Substanzen. Diese Substanzen verhindern eine gleichmäßige Benetzung der zu lackierenden Oberfläche und verursachen so trichterförmige Störstellen und Kraterbildungen in der Lackschicht. Seit Einführung der Lackierung mit lösemittelfreien Lacken (richtig: Lösemittelarm) in der Automobilindustrie wird für Produktionsmaterial, Anlagen und Werkzeuge Labsfreiheit gefordert. Da nicht bekannt ist, welche Substanzen zu diesen Störungen führen, werden Materialien, Bauteile und Baugruppen auf Labsfreiheit geprüft. Während bei Metallen und vielen Kunststoffen durch intensive Reinigung die oberflächlich haftenden Fertigungshilfsmittel (Trenn,- Kühlmittel u.s.w) sicher entfernt werden, genügt bei Elastomeren eine Oberflächenreinigung nicht. Je nach Compound sind nicht nur verbleibende oberflächliche Fertigungshilfsmittel zu entfernen. In das Material diffundierte Spuren der Fertigungshilfsmittel und auch einige nicht gebundene Mischungsbestandteile müssen entfernt werden. OVE hat einen Prozess entwickelt, welcher Elastomere weitestgehend LABS-frei reinigt. Bei Compounds mit hohen Anteilen an LABS-Substanzen in der Mischung kann es aber je nach Lager und Einsatzbedingungen zur erneuten Kontamination kommen. Der OVE-Reinigungsprozess erzielt beste Ergebnisse. Nach einer intensiven Nassreinigung mit Fettlöser werden die Teile im Niederdruckplasma mit einer Sauerstoff-Spülung tiefengereinigt. Prinzip Plasma Plasma ist ein gasförmiges Gemisch aus Atomen, Molekülen, Ionen und freien Elektronen. Ein Niederdruckplasma entsteht, wenn sich ein Gas bei niedrigem Druck (0,1 - 100 Pa) in einem elektrischen Feld (z. B. 50 kHz Wechselfeld, 1000 V) befindet (siehe Abbildung 1). Die in jedem Gas vorhandenen wenigen freien Elektronen und negativ geladenen Ionen werden zur Kathode hin beschleunigt. Alle positiv geladenen Ionen werden zur Anode hin beschleunigt. Die Teilchen besitzen aufgrund des niedrigen Drucks eine lange freie Weglänge und werden auf einige 100 eV beschleunigt. Stoßen diese hochenergetischen Teilchen mit den Molekülen des Gases zusammen, spalten sie sie ebenfalls in Ionen, freie Elektronen und freie Radikale auf. Auf diese Weise entsteht ein Plasma mit einem hohen Anteil an reaktiven Teilchen. Das OVE - Verfahren Die zu behandelnden Elastomer- oder Kunststoffteile werden in Körben in die Prozesskammern eingebracht. Diese wird evakuiert. Anschließend wird etwas Prozessgas eingelassen. Bei einem Innendruck von 10 bis 500 Pa (Feinvakuum) wird durch ein hochfrequentes Wechselfeld das Prozessgas ionisiert. Als Prozessgas kommt Sauerstoff zum Einsatz. Durch den Unterdruck haben die ionisierten Gasteilchen eine ausreichend lange mittlere freie Wegstrecke bis zu einer Kollision mit anderen Gasteilchen. Die Wahrscheinlichkeit einer Kollision mit der zu behandelnden Elastomeroberfläche ist dadurch hinreichend hoch. Auf der Elastomeroberfläche finden hauptsächlich Oxidations- und Crackprozesse statt. An der Oberfläche bilden sich dadurch polare Gruppen in Form von Carbonyl-, Carboxy- und Hydroxidgruppen. Dieser Effekt bewirkt unter anderem auch eine meßbare Erhöhung der freien Oberflächenenergie. Die Einwirktiefe beträgt nur wenige Moleküllagen. Abbildung 2 zeigt den prinzipiellen Aufbau einer Plasmaanlage mit Gasversorgung, Plasmaprozessor und Vakuumpumpe. Die reaktiven Teilchen lösen die Verschmutzung von den zu reinigenden Teilen ab, indem sie entweder chemisch mit den Molekülen der Verschmutzung reagieren oder diese durch Abgabe ihrer hohen kinetischen Energie beim Aufprall "absprengen". Bei der Entfernung durch chemische Reaktionen werden die Verunreinigungen in Wasserdampf, Kohlendioxid und niedrigmolekulare flüchtige organische Teilchen aufgespalten (siehe Abbildung 3). Die gereinigten Oberflächen sind LABS-frei. Der Nachweis der LABS-Freiheit erfolgt durch die VW Prüfspezifikation 3.10.7 Prüfung nach VW-Prüfvorschrift. Die VW PV 3.10.7 ist als Standard weit verbreitet. Die zu prüfenden Bauteile werden mit einem Lösemittelgemisch benetzt, das Lösemittel auf einer Testplatte verdunstet, danach wird die Testplatte lackiert. Die Lackfläche darf keine Krater aufweisen. Beschreibung Im Niederdruck-Plasmaverfahren wird Sauerstoff im Vakuum durch Energiezufuhr angeregt. Es bilden sich Sauerstoffradikale (O) und Ozon (O2). Reaktive Rückstände (Öle, Fette,…) werden oxidiert und als Gas (CO, CO2 , H2O oder Stäube) entfernt. Ziel Labsfreiheit, Oberflächenaktivierung Anwendung Alle Elastomerarten Farbe Keine Änderung Schichtdicke Kein Schichtauftrag Temperaturbereich Keine Änderung Härte Keine Härteänderung Eigenschaften - Computergesteuertes Verfahren - Fertigteil entspricht der VW-Prüfspezifikation 3.10.7 - keine Veränderung der physikalischen Eigenschaften des behandelten Elastomers - „labsfrei“ für alle Produkte lieferbar Lieferzeit 2 – 3 Wochen Preis Auf Anfrage
Pulverbeschichtung

Pulverbeschichtung

Bei der Beschichtung legen wir großen Wert auf einen effektiven Korrosionsschutz und eine gleichmäßige Schichtbildung.
Industrielacke

Industrielacke

Bei industriellen Anwendungen bieten die Flüssiglacke von FreiLacke hochwirksame Lösungen für die Beschichtung aller Oberflächen, die schweren Beanspruchungen standhalten müssen. Immer wenn es in Industrie und Produktion besonders hart zur Sache geht, sind Schutzlacke von besonders hoher Qualität gefragt. Bei industriellen Anwendungen bieten die Flüssiglacke von FreiLacke hochwirksame Lösungen für die Beschichtung aller Oberflächen, die schweren Beanspruchungen standhalten müssen. Egal, ob es sich etwa um härteste Beanspruchungen durch Korrosion, Chemikalien oder Witterungseinflüsse handelt – FreiLacke hat die optimale Schutzbeschichtung für alle Einsatzgebiete. Beispielsweise für Maschinen und Anlagen, die im Produktionsbereich zum Einsatz kommen oder für Baumaschinen, Container, Räder, Rohrleitungssysteme und vieles mehr. Ein weiterer Vorteil, den Sie nutzen sollten: FreiLacke entwickelt und produziert als führender Systemanbieter alle Lacke unter einem Dach. Darum ist FreiLacke Ihr idealer Ansprechpartner für wirklich jede industrielle Oberflächenbeschichtung.
Pulverbeschichtung

Pulverbeschichtung

Durch dieses Verfahren werden Fensterprofile, Fassadenelemente und weitere Bauteile, die der Witterung ausgesetzt sind, effektiv geschützt. Mehr als 220 RAL-Töne und Sonderfarben sind stetig ab Lager verfügbar.
Industrielacke

Industrielacke

Unsere Lacke für den Bereich Maschinen- und Anlagenbau bieten Ihnen eine breite Palette von Farbtönen. Im Anlagen- und Maschinenbau liegt unser Schwerpunkt in der Entwicklung wässriger Ein- und Zweikomponentensysteme für Lackieranlagen. Selbstverständlich finden unsere Systeme auch im allgemeinen Maschinenbau, bei Motoren und Motorenteilen, Turbinen etc. Anwendung. Produktprogramm Beste Funktionsfähigkeit und lange Haltbarkeit für Ihre Produkte erreichen Sie mit unseren Lacken und Lacksystemen. Individuelle Entwicklungen Sie suchen eine Lösung für ein spezifisches Problem? Als Partner mit langjähriger Erfahrung erarbeiten wir mit Ihnen maßgeschneiderte Lösungen für Ihren Anwendungsfall. Kunden aus dem Bereich Anlagen- & Maschinenbau Renommierte Unternehmen und Großkonzerne im Anlagen- und Maschinenbau arbeiten erfolgreich mit Weckerle-Lacken.
Plasmaschneiden

Plasmaschneiden

Als Alternative zum Laserschneiden kommt hier eine Technik aus dem Plasmaschneiden zum Einsatz, das Wirbelstromverfahren. Hierbei sind Winkelabweichungen nur noch im geringen Maßen erkennbar. Was den Qualitätsvergleich mit einem Laserzuschnitt sehr nahe kommt, in der Regel aber kostengünstiger ist. Außerdem können auch hochlegierte Stähle, Aluminium und Bundmetalle verarbeitet werden.
Kaltaktives Plasma

Kaltaktives Plasma

Auf unseren Systemen kann konventionelle als auch kaltaktive Plasmabehandlung zum Einsatz kommen. Besonders die kaltaktive Plasma-technologie behandelt ihre Teile schonend bei Temperaturen bis max. 70°C. Gerne beraten wir Sie.
Plasmaschneiden

Plasmaschneiden

Genauigkeit und Schnittgeschwindigkeit Das Plasmaschneiden benötigt eine zielgerichtete Kombination aus Plasmagas und Sekundärgas. Im Gegensatz zum autogenen Brennschneiden ist das Verfahren in erster Linie ein Schmelzprozess. Der Lichtbogen und das Plasmagas werden durch eine wassergekühlte Kupferdüse eingeschnürt. Hierdurch wird das Gas bis zur Dossoziation und teilweise bis zur Ionisation erhitzt, so dass eine heiße Plasmaflamme entsteht, welche Temperaturen bis 30.000 Grad Kelvin aufweist. Das Grundmaterial wird in der Schnittfuge augenblicklich geschmolzen und durch das Plasmagas aus der entstehenden Fuge geblasen. Es sind dabei hohe Schnittqualitäten erreichbar. Mit dem Plasmaschneideverfahren lassen sich im Gegensatz zum autogenen Brennschneiden alle elektrisch leitenden Werkstoffe trennen. Wirtschaftliches Plasmaschneiden für metallische Werkstoffe Wir schneiden verschiedenste Werkstoffe Wir verwenden das Plasmaschneideverfahren zur Bearbeitung von Blechen aus Stahl, Edelstahl und hochlegierten Stählen in einem Arbeitsbereich von 3.000 x 6.000 mm. Auf unseren CNC gesteuerten Anlagen lassen sich hohe Schnittgeschwindigkeiten und Präzision bei sehr moderaten Betriebskosten erzielen.
Plasmaschneiden

Plasmaschneiden

Plasmaschneiden nutzt einen Plasmastrahl, um Metalle zu schmelzen und von der Schnittfuge zu entfernen, auch für solche, die sonst nicht thermisch schneidbar sind. Dieses Verfahren ist durch hohe Geschwindigkeiten besonders effizient und wird in zwei Hauptarten unterschieden: Direktes Plasmaschneiden, wo der Lichtbogen direkt zwischen Elektrode und Werkstück stattfindet, und indirektes Schneiden, das den Lichtbogen zwischen Elektrode und einer Hilfsanode verwendet. Im Vergleich zum Laserschneiden, das präziser aber begrenzt in der Materialdicke ist, bietet Plasmaschneiden eine kostengünstige Alternative mit hoher Wirtschaftlichkeit und geringeren Anschaffungs- sowie Unterhaltskosten.
Plasma-Nitrieren

Plasma-Nitrieren

Die Nitrierhärtung im Vakuum mittels Ionenbeschuss im Plasma einer modifizierten Gasentladung, ist ein Verfahren zur Oberflächenbehandlung von Werkstücken aus z.B. Eisen, Stahl, Guss. In einer Retorte wird zwischen Werkstückoberfläche und Retortenwand eine Gleichspannung angelegt, wobei die Werkstücke vorwiegend als Kathode, die Retortenwand als Anode geschaltet sind. Der Atmosphärendruck wird evakuiert und bei einem konstanten Unterdruckbereich in einem reaktionsfähigen Behandlungsgas die Gasentladung durch Anlegen einer Basisspannung eingeleitet.
Plasmaschneiden

Plasmaschneiden

Drei hocheffiziente Plasmaschneidanlagen, davon eine neue Zinser / Kjellberg Feinplasma Anlage sorgen für kurze Durchlaufzeiten und geringe Kosten. Effiziente Schnittoptimierungen, dank moderner Verschachtelungs-Software bedeuten einen geringen Verschnittanteil. Davon profitieren Sie in Form von günstigeren Materialkosten. Sie erhalten bei Heinz Edelstahl Zuschnitte aus 10- bis 40-mm Blechen (fast) in Laserqualität - gefertigt auf unserer neuen Feinplasma-Schneidanlage. Mit dieser Anlage können exaktere Brennzuschnitte angefertigt werden, die keine bzw. nur eine geringe Nachbearbeitung erfordern. 
Plasmazuschnitte

Plasmazuschnitte

Beim Brennschneiden von Stahl mit einer CNC-Brennschneidmaschine können wir für Sie wirtschaftlich Zuschnitte wie Rechtecke, Ringe, Ronden u.a. nach Ihren Wünschen herstellen. Dabei können wir mit der Plasma Brennschneidtechnik bei einer Blechdicke von 3-45 mm arbeiten. Der Vorteil von Plasmazuschnitten gegenüber dem Laser ist die Wirtschaftlichkeit. Die Schnittgeschwindigkeiten sind bei den dickeren Blechstärken ähnlich bzw. gleich schnell wie beim Laser. Die Maschine ist jedoch im Invest und in der Wartung deutlich günstiger und hat damit einen günstigeren Stundensatz. Außerdem sind Plasma-Brennschneidmaschinen bei gleicher Investitionshöhe meist deutlich größer und können somit größere Bauteile herstellen. Plasmazuschnitte haben jedoch qualitativ dem Laser einen kleinen Nachteil. Sehr kleine Löcher und Innenausschnitte sind nicht ganz so hochpräzise wie bei einem Laserschnitt und können einen Schrägschnitt aufweisen. Gegenüber dem Schneidverfahren Autogen setzt sich die Plasma bei kleinen Blechdicken deutlich auf Grund der schnellen Schnittgeschwindigkeiten durch. Damit ist die Maschine wesentlich wirtschaftlicher als eine langsame Autogen-Brennschneidmaschine. Die Autogentechnik kann hier nur punkten wenn man auf Grund der Bauteilgeometrie mehrere Brenner einsetzen kann. Somit kann man bsp. 6 Teile gleichzeitig schneiden während auf der Plasma-Maschine nur 1 Teil produziert wird. Bei Großsserien und Massenteilen ist dies sehr wirtschaftlich und kann dann günstiger sein. Die Nachteile sind jedoch, dass beim Autogenschneiden sehr große Wärmeeinbringung stattfindet. Damit werden die Kanten hart und die Teile oftmals uneben oder wellig. Blechdicken: 3-45 mm max. Breite: 4.000 mm max. Schneidlänge: 24.000 mm
Plasmaschneiden

Plasmaschneiden

Plasmaschneiden ist eins der wirtschaftlichsten Trennverfahren und sowohl Privatleute als auch gewerbliche Kunden können dies bei uns beauftragen. Das Plasmaschneiden eignet sich für Sie vor allem dann, wenn Sie auf einen besonders glatten und sauberen Schnitt angewiesen sind. Dabei ist nicht nur die Verarbeitung von Stahl möglich, sondern auch die von jedem anderen Metall.
Plasmaschneiden

Plasmaschneiden

leistungsstarkes und vielfältiges Schneidverfahren einsetzbar bei allen Metallen schmale Wärmeeinflusszone hohe Schneidgeschwindigkeit Trennung von elektrisch leitenden Werkstoffen
Plasmastrahlquellen

Plasmastrahlquellen

Plasmastrahlquellen sind fortschrittliche Geräte, die in verschiedenen Anwendungen eingesetzt werden, insbesondere in der Materialbearbeitung und Oberflächenmodifikation. Diese Quellen erzeugen einen intensiven Plasmastrahl, der für eine präzise und effektive Behandlung von Materialien verwendet wird. Plasmastrahlquellen bieten zahlreiche Vorteile und finden Anwendung in verschiedenen Industriezweigen. Plasma ist ein ionisiertes Gas, das aus einer Mischung von neutralen Atomen, Elektronen und geladenen Ionen besteht. Plasmastrahlquellen verwenden elektrische Energie, um das Gas in einen hochenergetischen Zustand zu versetzen und ein Plasma zu erzeugen. Dieses Plasma wird dann durch Düsen oder Elektroden gezielt fokussiert und beschleunigt, um einen kraftvollen Plasmastrahl zu erzeugen. Der Plasmastrahl kann zum Schneiden, Schweißen, Beschichten, Reinigen oder Ätzen von Materialien verwendet werden. Die hohe Energie des Plasmastrahls ermöglicht präzise und kontrollierte Bearbeitungsprozesse. Zum Beispiel wird das Plasmastrahlschneiden häufig in der Metallverarbeitung eingesetzt, um dicke Metallplatten mit großer Präzision zu schneiden. Das Plasmastrahlschweißen ermöglicht das Verbinden von Metallteilen ohne zusätzliches Schweißmaterial. Ein weiterer großer Vorteil von Plasmastrahlquellen liegt in ihrer Vielseitigkeit. Sie können mit einer Vielzahl von Gasen betrieben werden, wie beispielsweise Argon, Wasserstoff, Stickstoff oder Sauerstoff, je nach Anwendungsanforderungen. Durch die Auswahl des richtigen Gases können die Eigenschaften des Plasmastrahls angepasst werden, um die beste Leistung zu erzielen. Darüber hinaus können Plasmastrahlquellen auch in Kombination mit anderen Bearbeitungsmethoden wie Laser, Wasserstrahl oder mechanischen Werkzeugen eingesetzt werden, um verbesserte Ergebnisse zu erzielen. Plasmastrahlquellen bieten auch Vorteile in Bezug auf Präzision und Qualität der Bearbeitung. Der Plasmastrahl ermöglicht es, komplexe Formen und Konturen mit hoher Genauigkeit zu schneiden oder zu schweißen. Die Steuerung der Plasmastrahlquellen kann mit Hilfe von CNC-Steuerungen automatisiert werden, um wiederholbare und präzise Ergebnisse zu erzielen. Darüber hinaus erzeugt der Plasmastrahl im Allgemeinen eine schmale Wärmeeinflusszone, was zu geringen Verformungen und einer hohen Oberflächenqualität führt. Es ist wichtig anzumerken, dass der Betrieb von Plasmastrahlquellen Fachwissen und Erfahrung erfordert. Der sichere Umgang mit Hochenergieplasma erfordert geeignete Sicherheitsvorkehrungen und Schulungen. Es ist auch wichtig, die Parameter wie Gasfluss, Stromstärke und Geschwindigkeit des Plasmastrahls sorgfältig zu kontrollieren, um die gewünschten Ergebnisse zu erzielen. Insgesamt bieten Plasmastrahlquellen eine leistungsstarke und vielseitige Lösung für die präzise Materialbearbeitung und Oberflächenmodifikation. Sie ermöglichen eine effektive Bearbeitung von verschiedenen Materialien und bieten eine hohe Qualität und Präzision. Mit kontinuierlichen Weiterentwicklungen und Innovationen in der Plasmastrahltechnologie werden Plasmastrahlquellen weiterhin eine wichtige Rolle in der modernen Fertigung und Materialbearbeitung spielen.
POWER PULSE-Hochspannungs-Pulsgleichrichter für molekulare Präzision bei plasmachemischen Beschichtungen

POWER PULSE-Hochspannungs-Pulsgleichrichter für molekulare Präzision bei plasmachemischen Beschichtungen

Plasmachemische Beschichtungen sind unter verschiedenen Bezeichnungen international bekannt. Sie werden als elektrokeramische Beschichtung, Plasma-Chemische Oxidation (PCO®), Plasma-Elektrolytische Oxidation (PEO) oder Micro Arc Oxidation (MAO) bezeichnet. Mithilfe plasmachemischer Beschichtungen können sehr präzise und belastbare keramikartige Schichten auf Leichtmetallen hergestellt werden. Sie schützen das Trägermaterial äußerst zuverlässig vor Korrosion und Verschleiß – vor allem in hochkorrosiven Bereichen und bei hoher mechanischer Belastung. Ebenso überzeugen sie durch eine ausgezeichnete Chemikalien- und Temperaturbeständigkeit bei extremer Abriebfestigkeit.
Laserauftragschweißen

Laserauftragschweißen

Laserauftragschweißen im Prozess Beim Laserauftragschweißen wird zum Zwecke der Reparatur oder des Verschleißschutzes Material aufgetragen. Das aufgeschweißte Material kann dabei in Bezug auf Härte und mechanische Eigenschaften genau auf den Lastfall abgestimmt werden. Konventionell werden Aufschweißungen mit autogenen oder elektrischen Verfahren aufgebracht, was zu einer sehr hohen Wärmebelastung führt und nicht verzugsfrei ist. Beim Laserauftragschweißen bzw. Laserbeschichten wird dagegen mit einem präzisen Laser gearbeitet, sodass Schweißraupen mit Breiten zwischen 0 und 4mm aufgeschweißt werden können. Das erlaubt ein sehr präzises Auftragschweißen und die geringe, aber konzentrierte Wärmeeinbringung garantiert größtmögliche Verzugsfreiheit. Damit eignet sich das Laserauftragschweißen hervorragend für die Reparatur von Werkzeugen und Maschinenkomponenten und für den Verschleißschutz. Beim Verschleißschutz von sehr harten Teilen wird übrigens oft auch der Begriff Aufpanzern verwendet. Ein anderes Wort für Laserauftragschweißen ist außerdem Auflasern. Es wird gern für das Laserbeschichten von Teilen verwendet, die früher zur Reparatur verchromt wurden. Die Umstellung vom Verchromen oder Hartverchromen auf Auflasern ist ein wichtiger Beitrag zum Umweltschutz, denn es entstehen bei der Laseroberflächenbehandlung keine giftigen Abfälle, die kostenintensiv entsorgt werden müssen. Vorteile Der wichtigste Vorteil des Laserauftragschweißens bzw. Laserbeschichtens liegt darin, dass aufgrund des präzisen Lasers sehr fein gearbeitet werden kann. Dabei werden die Spuren CNC-gesteuert aufgeschweißt, sodass die Reproduzierbarkeit sehr hoch ist und auch größere Volumina schnell aufgeschweißt werden können. Der Schweißprozess sorgt für eine dauerhafte Verbindung von Grund- und Zusatzmaterial. Gleichzeitig ist die Wärmeeinbringung so gering, dass weitgehende Verzugsfreiheit gegeben ist. Durch Laserauftragschweißen lassen sich alle Arten von Metallen bearbeiten. Dabei steht ein breites Spektrum an verwendbaren Zusatzmaterialien zur Verfügung. Die aufgeschweißte Schicht kann so an die spezifische Verschleißbelastung optimal angepasst werden. So ist bei den meisten Materialvarianten beim Laserauftragschweißen die Härte zwischen 20..65 HRC einstellbar. Das Laserauftragschweißen ist darüber hinaus optimal für das Einschmelzen von Hartstoffen (bis 2000 HV, Verschleißschutz). Durch diese Optimierung des Materials kann auch bei der Reparatur verschlissener Teile durch Laserauftragschweißen oft ein Ergebnis erzielt werden, das weitaus bessere Eigenschaften als das Original hat. Besonders attraktive Vorteile der Laseroberflächenbehandlung finden sich im Bereich der Reparatur, denn: Das Umstellen vom Verchromen auf Auflasern ist ein Gewinn für unsere Umwelt und kostengünstiger. - sehr präzise - verzugsarm bis verzugsfrei - kaum Poren oder Lunker - für die meisten Materialien verwendbar - Härten 20..65 HRC - auch für Aluminium - für Reparatur und Verschleißschutz - schnell und reproduzierbar
Beschriftungslaser Multi-Light

Beschriftungslaser Multi-Light

Der neue Schilling Beschriftungslaser Multi-Light ist ein kompakter Tisch-Beschriftungslaser Made in Germany. Er vereint Topqualität und Sicherheit mit einem günstigen Preis. Bereits ab 16.990 € sind 20 Watt Faserlaser Komplettsysteme zur Laserbeschriftung erhältlich. Der Multi-Light ist für die schnelle und professionelle Laserbeschriftung kleiner bis großer Stückzahlen geeignet. Es gibt ihn mit verschiedenen Leistungsklassen von 20 bis 50 Watt. Außerdem ist er optional mit der MOPA Technologie erhältlich. Im Lieferumfang sind die Laserquelle (20, 30, 50 Watt Faserlaser oder 20, 30 Watt MOPA Faserlaser) eine moderne Schutzkabine, eine automatische Z-Achse mit Faltenbalg, eine große Lochplatte sowie die PC Markiersoftware EZCAD enthalten. Der Beschriftungslaser Multi-Light hat ein Standard Beschriftungsfeld von 110 x 110 mm. Bei Bedarf kann er, bei geeigneten Voraussetzungen, auch mit einem größeren Beschriftungsbereich ausgestattet werden. Die Beschriftungssoftware EZCAD ist intuitiv zu bedienen. Mit ihr können Logos, Grafiken, Texte, Zahlen, Codes wie DataMatrix und Barcodes, fortlaufende Nummerierungen und Rundsätze beschriftet werden. Auch eine Excel Anbindung ist standardmäßig inklusive. Der Multi-Light kann mit einer Rotationsachse erweitert werden, so dass mit ihm auch runde Teile auf 360° gelasert werden können. Gegen Aufpreis kann der Beschriftungslaser Multi-Light in der Pro Version ausgeliefert werden. Die Pro Version enthält einen verbesserten Scan-Head und eine bessere Steuerkarte sowie die Software AnyMarker Designer. Hierdurch kann der Laser auch mit Datenbanken und anderen Maschinen kommunizieren. Das ist z. B. wichtig wenn man den Laser zukünftig mit einem Roboter steuern möchte.
HÄRTESCHUTZMITTEL

HÄRTESCHUTZMITTEL

Härteschutzmittel für die Gasaufkohlung, Niederdruck-Aufkohlung, Pulver- und Granulataufkohlung, für das Gasnitrieren, Nitrocarburieren, Plasma-/ Pulsplasmanitrieren sowie für Glühprozesse. Aufkohlungs- und Nitrierprozesse basieren auf der thermochemischen Diffusion von Kohlenstoff und/ oder Stickstoff in die Randschicht wärmebehandelter Bauteile. CONDURSAL, CONDURON und VACUCOAT Härteschutzmittel setzen Maßstäbe, wenn hochwertige und komplexe Bauteile gasdicht bei der Wärmebehandlung, in definierten Bereichen, gegen Diffusion geschützt werden müssen. Dies um nachfolgende Bearbeitungsschritte, wie eine spanende Bearbeitung, eine Verformung oder aber einen Schweißprozess zu ermöglichen, in Einzelfällen auch zur Minimierung der Rissgefahr beim Richten insbesondere im Bereich von Gewindespitzen oder von Einstichen. Die unübertroffen hohe Produktqualität, basierend auf dem Einsatz moderner Fertigungs- und Prüfverfahren, gewährleistet eine zuverlässige und prozesssichere Schutzwirkung. Die hohe Ergiebigkeit ermöglicht zudem eine besonders wirtschaftliche und ressourcensparende Anwendung. Die Applikation kann mittels Streichen, Tauchen, Spritzen, Auspressen, Stempeln oder mittels eines individuell auf die kundenspezifische Anforderung zugeschnittenen Sonderverfahrens erfolgen. Spezialverdünner zur individuellen Einstellung der Produktkonsistenz beim Kunden und abgestimmt auf das jeweilige Produkt stehen ebenfalls zur Verfügung. GASAUFKOHLUNG Produkt Maximale Kohlungstiefe Lösemittelfrei Entfernbarkeit nach der Wärmebehandlung Typische Anwendungsbereiche CONDURSAL 0090 CONDURSAL 4000 CONDURSAL 0119 1,3 mm 1,3 mm 1,3 mm Nein Wasserabwaschbar Automobil- und deren Zulieferindustrie, Maschinenbau, Elektrowerkzeuge, Kettenindustrie, Antriebstechnik, Lohn- und Betriebshärtereien CONDURSAL 666 CONDURSAL 777 CONDURSAL 790 1,0 mm 1,7 mm 3,0 mm Wasserabwaschbar Automobil- und deren Zulieferindustrie, Maschinenbau, Elektrowerkzeuge, Kettenindustrie, Antriebstechnik, Lohn- und Betriebshärtereien CONDURSAL 0118 CONDURSAL 0118GWE CONDURON G55HK CONDURON G55 CONDURON 33 CONDURON LV CONDURON 160 3,0 mm 3,0 mm 4,0 mm 5,0 mm 5,0 mm 5,0 mm 5,0 mm Mechanisch entfernbar durch Bürsten oder Strahlen Großgetriebeteile, Bergbau, Ölförder- und Bohrindustrie, Fördertechnik, Windkraftindustrie, Lohn- und Betriebshärtereien
FlyMarker mini 120/100 STATION

FlyMarker mini 120/100 STATION

ALL-IN-ONE - Die einfachste Lösung seit es Tischmaschinen gibt - nur aufstellen, einstecken und losmarkieren! Das rein elektrisch betriebene Tischmarkiersystem FlyMarker mini 120/100 STATION besticht durch seine einfache Handhabung: Aufstellen. Einstecken. Losmarkieren! Der FlyMarker mini 120/100 STATION ist mit einer sehr benutzerfreundlichen Oberfläche ausgestattet und verfügt über ein großes Markierfeld von 120 x 100 mm. Durch seine integrierte Steuerung ist der Tischmarkierer als All-In-One-System der ideale Partner für Ihre Werkstatt. Sein hochwertiges Führungssystem verleiht ihm höchste Stabilität und gewährleistet eine hohe Markierqualität. Abgerundet wird das System durch sein attraktives Preis-Leistungs-Verhältnis. STATIONÄR - ALL-IN-ONE System mit integrierter Steuerung und Eingabe über USB Tastatur oder kapazitiven Touchscreen (optional) - Schnelle und dauerhafte Markierung per Knopfdruck - Kipphebelfunktion für schnellen Bauteilwechsel und Höhenverstellung EINFACH - Kein Druckluftkabel wird benötigt, da elektromagnetischer Nadelantrieb - Übersichtliche und intuitive Bediensoftware für einfachste Handhabung - Praktische Vorschaufunktion der späteren Markierung ZUVERLÄSSIG - Hochwertiges Führungssystem für höchste Stabilität - Doppelgeführte Linearführungen in X- und Y-Richtung für verzugsfreie, mehrzeilige Markierungen ohne Qualitätseinbußen - Leistungsstarke Prozessortechnologie Basisvariante: ab 4.240,- €
Kabel- und Schlauchschutzspirale

Kabel- und Schlauchschutzspirale

DIN 17223, Werkstoff EN 10270-1 SH (C), vorverzinkt. Baugrößen: Kabel bis mm D2 3,0 Drahtstärke d 0,8 Außendurchmesser De 5,6 Gesamtlänge L1 120
Temperaturregelgeräte

Temperaturregelgeräte

Wir sind nicht nur der Spezialist für Heizschläuche, sondern bieten Ihnen auch die passende Mess- und Regeltechnik.
Feuerwehrkupplungen Storz / Guillemin

Feuerwehrkupplungen Storz / Guillemin

Umfasst Storz-Kupplungen mit festem Gewindeanschluss, Storz-Kupplungen mit drehbaren Gewindeanschluss, Guillemin-Kupplungen mit Gewindeanschluss, Feuerwehr-Kupplungen etc.
Kolbendichtungen Gleitef

Kolbendichtungen Gleitef

Kolbendichtungen sind aktive Dichtelemente, einsetzbar bei außendichtenden Anwendungen in der Hydraulik und Pneumatik. Kolbendichtungen werden in verschiedenen Varianten hergestellt. Verwendet werden Kolbendichtungen überwiegend in dynamischen und linear bewegten Anwendungen. Durch den wirkenden Systemdruck wird die Dichtfunktion unterstützt. Gleitef KG ist ein doppeltwirkendes Dichtelement, das aus einer PTFE Dichtung und einem O-Ring als Vorspannelement besteht. Gleitef KG ist ein aktives Dichtelement, da durch den wirkenden Systemdruck die Pressung auf die Dichtflächen erhöht wird. Besonders geeignet für Hydraulik- und Pneumatikzylinder, Armaturen, Pressen und Werkzeugmaschinen. Das PTFE Compound wird zur Verbesserung der Druckfestigkeit mit Bronze oder Kohle Graphit gefüllt, andere Compounds sind auf Anfrage erhältlich. Da PTFE Dichtelemente spanend hergestellt werden, können sie für jeden Einbauraum und jeden Durchmesser gefertigt werden. O-Ringe sind in allen gängigen Werkstoffen erhältlich. Hauptanwendungen: Standard doppeltwirkende Kolbendichtung für Hydraulik- und Pneumatikzylinder Werkstoffe: Elastomere, PTFE, PTFE mit Füllstoffen Gleitef KQ ist ein doppeltwirkendes Dichtelement, das aus einer PTFE Dichtung mit einem X-Ring an der Seite der dynamischen Abdichtung und einem O-Ring als Vorspannelement besteht. Gleitef KQ ist ein aktives Dichtelement, da durch den wirkenden Systemdruck die Pressung auf die Dichtflächen erhöht wird. Das PTFE Compound wird zur Verbesserung der Druckfestigkeit mit Bronze oder Kohle Graphit gefüllt, andere Compounds sind auf Anfrage erhältlich. Besonders geeignet für den Einsatz in Hydraulikzylinder, Kolbenspeicher, Pressen, Stabilisatoren und Werkzeugmaschinen. Für den Einsatz zur Medientrennung und als Positionier- und Haltzylinder mit kleineren Durchmessern im Vergleich zu Gleitef KX. O-Ringe und X-Ringe sind in allen gängigen Werkstoffen erhältlich. Hauptanwendungen: Kolbendichtung zur Medientrennung oder für Positionierzylinder Werkstoffe: Elastomere, PTFE, PTFE mit Füllstoffen Gleitef KW ist ein doppeltwirkendes Dichtelement, das aus einer Polyurethan (TPU) Dichtung und einem O-Ring als Vorspannelement besteht. Gleitef KW ist ein aktives Dichtelement, da durch den wirkenden Systemdruck die Pressung auf die Dichtflächen erhöht wird. Gleitef KW verhindert durch seine besondere Geometrie den sogenannten Blow-By-Effekt bei beidseitiger Druckbeaufschlagung. Besonders geeignet für den Einsatz in Hydraulikzylinder, Landmaschinen, Hebebühnen und Werkzeugmaschinen. TPU zeichnet sich durch seine hervorragende Abriebbeständigkeit aus und kann auch bei Mangelschmierung eingesetzt werden. Die Standard TPU Mischung wird in einer Härte von 58 bis 72 Shore A gefertigt und ist in unterschiedlichen Farben verfügbar. O-Ringe sind in allen gängigen Werkstoffen erhältlich. Hauptanwendungen: Doppeltwirkende Kolbendichtung für Hydraulikanwendungen, verhindert Blow-By-Effekt Werkstoffe: Elastomere, Polyurethane Gleitef KF ist ein doppeltwirkendes Dichtelement, das aus einer PTFE Dichtung und einem O-Ring als Vorspannelement besteht. Gleitef KF ist ein aktives Dichtelement, da durch den wirkenden Systemdruck die Pressung auf die Dichtflächen erhöht wird. Gleitef KF benötigt einen deutlich kleineren Einbauraum als Gleitef KG und kommt für Anwendungen mit geringem Platzangebot und geringeren Drücken zur Anwendung. Besonders geeignet für den Einsatz in Hydraulik- und Pneumatikzylinder und in Werkzeugmaschinen. Das PTFE Compound wird zur Verbesserung der Druckfestigkeit mit Spezialfüllstoff oder Kohle Graphit gefüllt, andere Compounds sind auf Anfrage erhältlich. O-Ringe sind in allen gängigen Werkstoffen erhältlich. Hauptanwendungen: Kolbendichtung für Hydraulik- und Pneumatikzylinder in platzsparender Bauweise Werkstoffe: Elastomere, PTFE, PTFE mit Füllstoffe Gleitef KD ist ein doppeltwirkendes Dichtelement, das aus einer PTFE Dichtung und einem O-Ring als Vorspannelement besteht. Gleitef KD ist ein aktives Dichtelement, da durch den wirkenden Systemdruck die Pressung auf die Dichtflächen erhöht wird. Gleitef KD benötigt den geringsten Einbauraum, der dem von dynamischem O-Ring Abdichtungen entspricht und kommt für Anwendungen mit geringem Platzangebot und geringeren Drücken zur Anwendung. Besonders geeignet für Hydraulik- und Pneumatikzylinder, Ventile und Werkzeugmaschinen. Das PTFE Compound wird zur Verbesserung der Druckfestigkeit mit Spezialfüllstoff oder Kohle Graphit gefüllt, andere Compounds sind auf Anfrage erhältlich. O-Ringe sind in allen gängigen Werkstoffen erhältlich. Hauptanwendungen: Kolbendichtung für O-Ring Einbauräume Werkstoffe: Elastomere, PTFE, PTFE mit Füllstoffen Gleitef KX Doppeltwirkendes Dichtelement, PTFE Dichtung, X-Ring, dynamischen Abdichtung, zwei O-Ringen als Vorspannelemente, Medientrennung, Positionier- u. Haltzylinder, größere Durchmesser. Hauptanwendungen: Kolbendichtung zur Medientrennung oder für Haltezylinder
MAGNET FLACHGREIFER M05, FORM:B, D=32 ±0,20, H=7, H1=15,5, NDFEB, RUND, KOMP:...

MAGNET FLACHGREIFER M05, FORM:B, D=32 ±0,20, H=7, H1=15,5, NDFEB, RUND, KOMP:...

Werkstoff: Gehäuse Stahl. Magnetkern NdFeB. Ausführung: Gehäuse verzinkt. Hinweis: Geschirmtes System. Mit dem Dauermagnetwerkstoff NdFeB erhöht sich die Haftkraft gegenüber dem SmCo nochmals um ca. 10-20 %. Temperaturbereich: max. 80 °C.
SPOTY Aufbauleuchten

SPOTY Aufbauleuchten

VARIANTEN Einzelstrahler mit rundem Aufbaugehäuse und als DUO* oder TRIO* Aufbauversion (*Nur SPOTY SUN VARIO) SPOTY SHADE (nur für indirekten Lichteffekt) als Einzelstrahler mit rundem Aufbaugehäuse. SPOTY SMILE (nur mit seitlicher Abstrahlung) als Einzelstrahler mit rundem Aufbaugehäuse. Auch als modulare Strahler für das ECCOLED MODULA System erhältlich. FUNKTION Leuchtenkopf drehbar um 360°, schwenkbar um 90° (Nicht bei SPOTY SUN UNO, SPOTY SHADE UNO, SPOTY SMILE UNO ). Wechsellinsen-System für individuellen Abstrahlwinkel (Nicht bei SPOTY SHADE UNO, SPOTY SMILE UNO ) Zusätzliche indirekte Abstrahlung über Diffusor. Abstrahlung bei SPOTY SHADE nur indirekt über den Diffusor Abstrahlung bei SPOTY SMILE nur seitlich, Abstrahlwinkel 43°,ohne Diffusor LICHTFARBEN 2700K (Home) | 3500K (Office) LED TYPEN UND DATEN / FARBWIEDERGABE 2700K (Home) | 624 lm | 5,8W | 107 lm/W | CRI 90+ 3500K (Office) | 640 lm | 5,8W | 110 lm/W | CRI 90+ LINSEN TYPEN UND DATEN 2700K (Home) | 624 lm | 5,8W | 107 lm/W | CRI 90+ 3500K (Office) | 640 lm | 5,8W | 110 lm/W | CRI 90+ DIMMEN Standard Dimmbar mit Phasenabschnittdimmer (Trailing Edge). Optional dimmbar mit CASAMBI TED Light Control (Steuerung via Bluetooth über Tablet oder Mobilephone) oder DALI fähigen Betriebsgeräten. AUSFÜHRUNG /OBERFLÄCHEN Grundmaterial Aluminium in verschiedenen Oberflächen, Optische Linsen und Diffusor aus Kunststoff Aluminium Matt eloxiert Aluminium Poliert Weiß RAL 9010 MATT (Pulverbeschichtet) Schwarz RAL 9005 MATT (Pulverbeschichtet) Bronze MATT (Pulverbeschichtet) ENERGIE-EFFIZIENZ Diese Produkte enthalten Lichtquellen der Energieeffizienzklasse E (vormals A++) Die Leuchtmittel können mit handelsüblichen Werkzeugen getauscht werden.